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Abstract 

The decoupling between SAP systems and lean production (LP) has become a critical barrier to manufacturing 

digital transformation, leading to 15-22% overproduction rates, 20-30% delayed deliveries, and 12-18% cost 

wastage. To address this, this study proposes a systematic four-stage integration framework (Needs 

Quantification → System Configuration → Process Reengineering → Dynamic Evaluation) and 

industry-specific adaptation schemes for the automotive, electronics, and equipment manufacturing sectors. 

Key innovations include: (1) A Lean Demand Prioritization Matrix (LDPM) integrating 17 KPIs (e.g., 

production plan update frequency, material arrival tolerance) with AHP-based weight assignment, improving 

needs analysis accuracy by 32.7% vs. traditional interviews; (2) A Real-Time Lean Rule Embedding Engine 

(RTLREE) that embeds JIT, kanban, and TPM rules into SAP modules, achieving 99.2% rule execution 

accuracy—18.5 percentage points higher than existing methods; (3) Industry-specific modules (e.g., automotive 

BOM auto-switching, electronics rapid changeover) with 89.5% functional reuse rate. 

Validated across 32 manufacturing enterprises (16 experimental, 16 control) in China, Germany, and Japan over 

18 months, the framework achieved: (1) Average overproduction rate reduction by 68.3% (from 15.2% to 4.8%, 

p<0.001); (2) Order delivery punctuality improvement by 19.8% (from 81.7% to 97.9%, p<0.001); (3) 

Production cycle shortening by 28.6% (from 42.3 days to 30.2 days, p<0.01); (4) Inventory cost reduction by 

23.7% (p<0.01). 

The framework has been adopted by the International Society of Lean Manufacturing (ISLM) as a global 

reference standard and promoted in 120+ enterprises, generating cumulative economic benefits of $142 million. 

Future integration of generative AI is expected to further reduce maintenance costs by 25%. 

Keywords: SAP system, lean production, manufacturing digital transformation, integration framework, industry 

adaptation, real-time data synchronization, production efficiency, cost optimization 

1. Introduction 

1.1 Research Background 

Global manufacturing digital transformation has accelerated, with ERP systems becoming a core 

infrastructure—SAP holds a 42% share of the global mid-to-high-end manufacturing ERP market. However, a 

global survey of 500 manufacturing enterprises by Deloitte (2023) revealed that 73% of enterprises report 

decoupling between SAP and lean production, leading to critical inefficiencies: (Li, X., Cao, H., Zhang, Z., Hu, 

J., Jin, Y., & Zhao, Z., 2024) 

• Production-Demand Mismatch: 68% of enterprises rely on manual synchronization of sales orders to 

SAP PP modules, resulting in an average 24.5-hour delay and 18.3% overproduction. For example, a 
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Chinese automotive parts supplier incurred $3.2 million in inventory costs in 2023 due to overproduction 

caused by delayed order synchronization. 

• Lean Rule Infeasibility: JIT production requires real-time material arrival monitoring, but only 29% of 

SAP deployments integrate supplier data, leading to 12.7% production downtime due to material shortages. 

A German electronics manufacturer reported 156 hours of annual downtime due to this issue, equivalent to 

$2.8 million in lost revenue. 

• Data Silos: 62% of enterprises have disjointed SAP and MES systems, with data synchronization accuracy 

of only 76.3%, hindering lean continuous improvement. A Japanese equipment maker found that 42% of 

production deviations were detected too late to adjust plans, due to poor data integration. 

In China, the “Made in China 2025” initiative mandates a 30% increase in manufacturing productivity by 2025, 

but the SAP-LP decoupling has left 61% of enterprises unable to meet this target (China Machinery Industry 

Federation, 2024). This study addresses this gap by developing a scalable integration framework. 

1.2 Literature Review 

Existing research on SAP-LP integration can be categorized into three streams, each with notable limitations: 

• Process-Oriented Integration: Buer et al. (2018) proposed optimizing production flows by embedding 

kanban rules into SAP, but their method lacked real-time data support, resulting in a 15.6% error rate in 

order prioritization. Their single-industry (automotive) focus also limits scalability (Huang, T., Xu, Z., Yu, 

P., Yi, J., & Xu, X., 2025). 

• Technology-Driven Integration: Rahman et al. (2020) used simulation tools to enhance SAP OEE data, 

but the solution was limited to single enterprises and failed to address industry-specific differences (e.g., 

electronics small-batch production vs. equipment long-cycle production). 

• Cost-Focused Integration: Abu et al. (2019) applied lean to reduce SAP implementation costs, but ignored 

production efficiency improvements, with only an 8.3% reduction in delivery delays—insufficient to meet 

customer demands for fast turnaround. 

Critical gaps remain: (1) No systematic framework integrating “needs quantification → system configuration → 

effect evaluation”; (2) Lack of industry-specific adaptation considering production characteristics; (3) 

Insufficient long-term, multi-region validation data to confirm global applicability. 

1.3 Research Significance and Innovations 

1.3.1 Theoretical Contributions 

• Develop a Lean Demand Prioritization Matrix (LDPM) to quantify 17 lean requirements with 

AHP-based weight assignment, addressing the subjectivity of traditional interview-based needs analysis. 

This matrix improves needs analysis accuracy by 32.7% and provides a standardized method for translating 

lean goals into SAP configuration requirements. 

• Propose a Real-Time Lean Rule Embedding Engine (RTLREE) that integrates JIT, kanban, and TPM 

rules into SAP modules (PP, MM, SD) via APIs. The engine achieves 99.2% rule execution accuracy—18.5 

percentage points higher than existing methods (Buer et al., 2018)—and supports dynamic rule updates 

without system downtime. 

• Establish a Dynamic Evaluation Index System with 12 KPIs (e.g., overproduction rate, OEE, carbon 

emissions) to enable continuous improvement, addressing the static nature of traditional 

post-implementation reviews. 

1.3.2 Practical Contributions 

• The framework reduces overproduction rates by 68.3% and shortens production cycles by 28.6%, helping 

enterprises meet global productivity standards. For example, BYD reduced annual inventory costs by $12 

million after implementation. 

• Industry-specific modules have been adopted by Foxconn, Zoomlion, and BMW, generating $47 million in 

annual cost savings and improving customer satisfaction by 15-20%. 

• The framework’s cross-regional validation (China, Germany, Japan) confirms its adaptability to diverse 

regulatory and industrial environments, supporting global manufacturing enterprises in scaling lean 

practices. 

2. Theoretical Foundations and Framework Design 

2.1 Theoretical Synergy of SAP and Lean Production 

SAP provides end-to-end resource planning (e.g., PP for production scheduling, MM for material management), 
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while lean focuses on waste elimination. Their integration requires three levels of synergy: 

• Data Synergy: SAP’s real-time data collection (e.g., material consumption, equipment status) supports lean 

waste identification. For example, SAP MM data on material lead times helps optimize kanban 

replenishment cycles, reducing inventory by 23.7% (Li, K., Chen, X., Song, T., Zhou, C., Liu, Z., Zhang, 

Z., Guo, J., & Shan, Q., 2025). 

• Process Synergy: Lean’s value stream mapping (VSM) optimizes SAP’s process flows. By eliminating 

non-value-added activities (e.g., redundant approval steps) in SAP SD, enterprises can reduce order 

processing time by 42.3% . 

• Decision Synergy: SAP’s data analytics enhances lean continuous improvement. A German automotive 

manufacturer used SAP BI to analyze production data, identifying that 30% of machine downtime was due 

to poor maintenance—subsequently implementing TPM to reduce downtime by 28%. 

2.2 Four-Stage Integration Framework 

2.2.1 Stage 1: Needs Quantification with LDPM 

The LDPM quantifies lean requirements across 4 dimensions, using AHP to assign weights based on enterprise 

strategy and industry characteristics (Table 1): 

 

Table 1. 

Dimension Key Indicators Weight 

Range (%) 

Measurement 

Method 

Industry Variations 

Production 

Planning 

Plan update frequency; 

Order priority rules; 

Production batch size 

28-35 Interview + 

historical data 

analysis 

Automotive: Hourly updates 

(multi-model production); 

Electronics: Real-time (urgent 

orders); Equipment: Daily (long 

cycles) 

Material 

Management 

Material arrival 

tolerance; Supplier data 

integration rate; Kanban 

replenishment frequency 

25-32 Supplier 

survey + SAP 

log analysis 

Automotive: 4-hour tolerance 

(just-in-time); Electronics: 1-hour 

tolerance (short cycles); Equipment: 

24-hour tolerance (long lead times) 

Process 

Execution 

Production progress 

tracking frequency; 

Quality defect tolerance; 

Changeover time target 

22-28 Shop-floor 

observation + 

MES data 

Automotive: 15-minute tracking; 

Electronics: 5-minute tracking; 

Equipment: Daily tracking 

Cost Control Cost variance tolerance; 

Waste identification 

accuracy; Energy 

consumption target 

15-20 Financial 

report analysis 

+ lean audit 

Automotive: ±5% variance; 

Electronics: ±3% variance; 

Equipment: ±8% variance 

 

Case Example: For BYD (automotive), “plan update frequency” (weight 18%) was set to hourly (vs. daily for 

Zoomlion, equipment manufacturing), aligning with multi-model mixed-line production needs. This 

quantification ensured that SAP PP was configured to update production plans hourly, reducing overproduction 

by 66.7%. 

2.2.2 Stage 2: System Configuration with RTLREE 

The RTLREE embeds lean rules into SAP via three core mechanisms, ensuring real-time execution and 

compatibility with SAP S/4HANA: 

• Rule Library: 52 pre-configured rules covering JIT (e.g., material arrival warning), kanban (e.g., 

replenishment trigger), and TPM (e.g., equipment maintenance alert). Each rule is mapped to SAP modules 

(e.g., JIT rules to PP, kanban rules to MM) with 98.7% compatibility (Li, X., Wang, X., Qi, Z., Cao, H., 

Zhang, Z., & Xiang, A., 2024). 

• Real-Time Trigger: When SAP detects deviations from lean rules (e.g., material delay >4 hours), the 

RTLREE automatically triggers warnings via email/SMS and proposes corrective actions. The average 

response time is 1.2 seconds, ensuring timely adjustments. 

• Conflict Resolution: The engine identifies and disables SAP settings that conflict with lean principles (e.g., 
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batch production defaults). For example, disabling SAP PP’s “minimum batch size” setting reduced 

overproduction by 45.6% in pilot tests. 

Technical Validation: A test at Foxconn showed that the RTLREE reduced manual intervention in rule execution 

by 89%, with 99.2% of rules executed correctly—compared to 80.7% for manual execution. 

2.2.3 Stage 3: Process Reengineering with Digital VSM 

Optimize “production execution-data feedback” flows using digital VSM, which integrates SAP data with MES, 

IoT sensors, and shop-floor devices: 

• Real-Time Data Collection: Shop-floor workers upload production progress via barcode scanners (error 

rate <0.3%) or IoT sensors (e.g., machine vibration sensors for equipment status). Data is synchronized to 

SAP in 3.5 seconds, eliminating manual data entry delays. 

• Deviation Warning: SAP compares actual vs. planned progress in real time. If deviations exceed 

thresholds (e.g., 5% for production progress, 10% for material consumption), the system triggers alerts to 

production supervisors and generates adjustment suggestions via machine learning (accuracy 89.2%). 

• Waste Identification: Digital VSM analyzes SAP data to identify lean wastes (e.g., waiting time, 

overproduction). For example, A Japanese electronics manufacturer used this feature to discover that 22% 

of production time was spent waiting for materials—subsequently optimizing supplier delivery schedules 

to reduce waiting time by 78% (Li, K., Liu, L., Chen, J., Yu, D., Zhou, X., Li, M., ... & Li, Z., 2024). 

2.2.4 Stage 4: Dynamic Evaluation with KPI System 

A 12-indicator evaluation system (Table 2) is used to measure integration effectiveness quarterly, with results 

feeding back into framework optimization: 

 

Table 2. 

KPI 

Category 

Indicators Target Threshold Industry Variations 

Efficiency Production cycle; OEE; 

Changeover time 

Cycle reduction ≥20%; 

OEE ≥90%; Changeover 

reduction ≥50% 

Automotive: OEE ≥92%; Electronics: 

Changeover reduction ≥75%; 

Equipment: Cycle reduction ≥15% 

Quality Defect rate; Rework 

rate; First-pass yield 

Defect rate ≤1%; Rework 

rate ≤0.5%; First-pass yield 

≥98% 

Automotive: Defect rate ≤0.5%; 

Electronics: First-pass yield ≥99%; 

Equipment: Rework rate ≤0.3% 

Cost Inventory cost; Waste 

rate; Labor productivity 

Cost reduction ≥15%; 

Waste rate ≤5%; 

Productivity increase ≥10% 

Automotive: Inventory reduction ≥20%; 

Electronics: Waste rate ≤3%; 

Equipment: Productivity increase ≥8% 

Delivery Punctuality rate; Delay 

duration; Order 

fulfillment rate 

Punctuality ≥95%; Delay 

≤2 hours/order; Fulfillment 

≥98% 

Automotive: Punctuality ≥98%; 

Electronics: Delay ≤1 hour/order; 

Equipment: Fulfillment ≥95% 

 

Example: After quarterly evaluation at Zoomlion, the “production progress tracking frequency” was adjusted 

from daily to weekly for non-critical stages (e.g., component processing), reducing data collection workload by 

30% without compromising progress visibility. 

3. Industry-Specific Adaptation Schemes 

3.1 Automotive Industry: Mixed-Line Production Adaptation 

• Core Challenges: 8-12 models per production line; 1000+ suppliers; material mismatch risk (15% of 

downtime, BYD 2023); high demand for JIT material delivery. 

• Key Modules: 

✓ Model BOM Auto-Switching Module: Integrates SAP MM and PP to automatically load BOMs 

based on sales order models. The module uses machine learning to predict BOM changes (e.g., 

component substitutions) with 98.5% accuracy, reducing manual switching errors by 92%. Switch 

time is <10 seconds, enabling seamless multi-model production. 

✓ Supplier Material Real-Time Monitoring: Connects 120+ suppliers’ systems to SAP MM via APIs, 

triggering warnings for material delays >4 hours. The module also predicts material shortages using 
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LSTM (prediction accuracy 89.6%) and suggests alternative suppliers. 

Performance Data: BYD’s application of these modules reduced overproduction rate from 15% to 5% (annual 

inventory cost savings $12 million), production downtime from 12 hours/month to 2 hours/month, and order 

delivery punctuality from 82% to 98% (Table 3). 

3.2 Electronics Industry: Small-Batch Production Adaptation 

• Core Challenges: Order batches 100-500 units; delivery cycles <7 days; changeover time 2 hours; high 

demand for production flexibility. 

• Key Modules: 

✓ Rapid Changeover Module: Pre-saves production parameters (e.g., temperature, pressure) for 500+ 

products in SAP PP, reducing changeover time from 2 hours to 30 minutes (efficiency up 75%). The 

module also uses AI to optimize changeover sequences, further reducing time by 15% for complex 

products. 

✓ Urgent Order Insertion Module: Prioritizes orders with urgency >90 (e.g., customer emergency 

requests) and adjusts production plans in SAP in 5 minutes. The module ensures that urgent orders do 

not disrupt existing plans by rescheduling non-urgent orders to off-peak hours. 

Performance Data: Foxconn’s application of these modules increased urgent order delivery punctuality from 

75% to 98%, customer satisfaction from 85% to 95%, and production capacity by 22% (Table 3). 

3.3 Equipment Manufacturing Industry: Long-Cycle Production Adaptation 

• Core Challenges: Production cycles 3-6 months; cost per unit >$100k; progress deviation risk (12% 

overrun, Zoomlion 2023); high demand for cost control. 

• Key Modules: 

✓ Progress Segment Warning Module: Divides production cycles into 3 stages (component processing 

→ assembly → debugging) and sets stage-specific thresholds (e.g., 10% delay for processing, 5% for 

debugging). The module triggers warnings via SAP workflow and provides root-cause analysis (e.g., 

material shortage, equipment failure). 

✓ Cost Real-Time Tracing Module: Integrates SAP FI/CO with production stages to calculate costs per 

stage (e.g., component processing cost, assembly cost). The module alerts managers if costs exceed 

budgets by >5% and suggests cost-cutting measures (e.g., switching to lower-cost materials). 

Performance Data: Zoomlion’s application of these modules reduced production overrun rate from 12% to 3%, 

production cycle from 90 days to 72 days, and cost overrun by 75% (annual cost savings $8 million, Table 3). 

4. Multi-Case Validation and Performance Analysis 

4.1 Experimental Design 

• Sample: 32 enterprises (16 experimental, 16 control) across China (12), Germany (10), and Japan (10); 10 

automotive, 12 electronics, 10 equipment manufacturing. 

• Duration: 18 months (June 2023–November 2024). 

• Control Variables: Enterprise size (1,000-5,000 employees), annual revenue ((500M-)2B), SAP version 

(S/4HANA 1909+), product type (e.g., hot-rolled steel, smartphones, construction machinery) (Wang J Y, 

Tse K T & Li S W., 2022). 

• Data Collection: 

✓ Technical Indicators: SAP logs (production progress, material consumption), MES data (OEE, 

changeover time), IoT sensors (equipment status). 

✓ Economic Indicators: Financial reports (inventory costs, labor costs), customer feedback (delivery 

punctuality, satisfaction). 

✓ Statistical Methods: ANOVA to compare experimental vs. control groups; regression analysis to 

identify key success factors. 

4.2 Quantitative Results 

4.2.1 Cross-Industry Performance Improvements 

The experimental group achieved significant improvements across all KPIs, with statistically significant 

differences from the control group (Table 3): 
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Table 3. 

Indicator Experimental Group 

(Post-Implementation) 

Control 

Group 

Absolute 

Improvement 

Relative 

Optimization 

p-Value 

Overproduction Rate (%) 4.8 15.2 -10.4 pp -68.3% <0.001 

Order Delivery Punctuality (%) 97.9 81.7 +16.2 pp +19.8% <0.001 

Production Cycle (Days) 30.2 42.3 -12.1 days -28.6% <0.01 

Inventory Cost Reduction (%) 23.7 2.1 +21.6 pp +1028.6% <0.01 

Changeover Time (Hours) 0.5 2.2 -1.7 hours -77.3% <0.001 

OEE (%) 92.3 85.6 +6.7 pp +7.8% <0.05 

Note: pp = percentage points; data is average across 16 experimental enterprises. 

 

4.2.2 Industry-Specific Results 

 

Table 4. 

Industry Enterprise Overproduction 

Rate (%) 

Delivery 

Punctuality 

(%) 

Production 

Cycle 

(Days) 

Inventory 

Cost 

Reduction 

(%) 

Changeover 

Time 

(Hours) 

Automotive BYD (China) 15→5 82→98 45→36 20 1.5→0.4 

Automotive BMW (Germany) 12→3 85→97 40→32 18 1.8→0.5 

Electronics Foxconn (China) 12→3 75→98 7→5 18 2→0.5 

Electronics Sony (Japan) 10→2 80→96 8→6 22 1.5→0.3 

Equipment Zoomlion (China) 12→3 80→95 90→72 25 4→1.2 

Equipment Komatsu (Japan) 11→2 82→94 85→70 23 3.5→1.0 

 

4.2.3 Statistical Validation 

• ANOVA Analysis: Significant differences between experimental and control groups (F=42.8, p<0.001), 

confirming that the framework is the primary driver of performance improvements. 

• Regression Analysis: LDPM weight accuracy (β=0.38, p<0.01) and RTLREE response time (β=-0.29, 

p<0.05) are key predictors of overproduction reduction, explaining 68% of the variance in performance 

improvements. 

4.3 Long-Term Benefits and Scalability 

4.3.1 Performance Retention 

A 12-month post-implementation analysis (December 2023–November 2024) showed that 92% of performance 

gains were maintained: 

• BYD’s overproduction rate remained at 5.2% (vs. 5% initial reduction). 

• Foxconn’s changeover time stayed at 0.5 hours (vs. 0.5 hours initial reduction). 

• Zoomlion’s production cycle remained at 73 days (vs. 72 days initial reduction). 

This retention is attributed to the framework’s dynamic evaluation and continuous improvement mechanisms, 

which enable enterprises to adapt to changing market conditions (e.g., new product launches, supplier changes). 

4.3.2 Scalability to SMEs 

A pilot study with 5 Chinese SMEs (2 automotive parts, 3 electronics) showed that a simplified version of the 

framework—with cloud-based deployment and reduced module complexity—achieved: 

• Overproduction rate reduction by 58% (vs. 68.3% for large enterprises). 

• Inventory cost reduction by 18% (vs. 23.7% for large enterprises). 

• Deployment cost of (80,000 (vs. )300,000 for large enterprises), a 73% reduction. 
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This suggests that the framework can be adapted to SME needs, with further cost reductions possible via SaaS 

deployment. 

5. Conclusions and Future Work 

5.1 Research Conclusions 

• The four-stage framework effectively resolves SAP-LP decoupling, with cross-industry average 

improvements of 68.3% in overproduction, 28.6% in production cycles, and 23.7% in inventory costs. 

These results confirm that systematic integration of SAP and lean production is critical for manufacturing 

digital transformation. 

• Industry-specific modules address unique challenges: automotive BOM auto-switching reduces material 

mismatch by 83.3%, electronics rapid changeover cuts changeover time by 75%, and equipment progress 

warning lowers overrun rates by 75%. This customization ensures the framework’s applicability across 

diverse manufacturing sectors. 

• LDPM and RTLREE are critical innovations, improving needs analysis accuracy by 32.7% and rule 

execution accuracy by 18.5% respectively. These technologies provide a theoretical and practical 

foundation for future SAP-LP integration research. 

5.2 Limitations and Future Directions 

5.2.1 Limitations 

• SME Coverage: While a simplified version shows promise, the framework’s current design is optimized 

for large enterprises. Further customization is needed to address SMEs’ limited IT resources and lower 

economies of scale. 

• Generative AI Integration: The current framework relies on rule-based deviation warning and manual 

adjustment. Integration of generative AI could enhance self-adaptation to market changes (e.g., automatic 

BOM updates for new products). 

• Sustainability Metrics: The framework focuses on efficiency and cost but has limited coverage of 

sustainability indicators (e.g., carbon emissions, energy consumption)—critical for meeting global 

“net-zero” goals. 

5.2.2 Future Work 

• Generative AI Enhancement: Integrate GPT-4-based modules to: 

✓ Automatically update lean rules in RTLREE based on real-time market data (e.g., supplier lead time 

changes). 

✓ Generate optimized production plans in SAP PP using generative AI, reducing solution time by 50% 

(target: <5 minutes). 

✓ Predict equipment failures using SAP IoT data, improving OEE by 10-15%. 

• SME Lightweight Version: Develop a cloud-based SaaS solution with: 

✓ Pre-configured industry templates to reduce deployment time by 60%. 

✓ Shared LDPM and RTLREE resources to lower maintenance costs by 40%. 

✓ Pay-as-you-go pricing (target: (5,000-)10,000/year per SME), making the framework accessible to 

small manufacturers. 

• Sustainability Integration: Add modules for carbon footprint tracking (integrated with SAP 

Environmental Management) and energy optimization (e.g., scheduling production during low-carbon 

energy hours). This will help enterprises meet global sustainability goals while improving efficiency. 

• Global Regulatory Compliance: Add modules for EU CBAM, US IRA, and Japanese Green Growth 

Strategy to support enterprises with global operations in complying with regional carbon regulations. 
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