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Abstract 

This paper presents a compact high-order finite volume method based on recording the weighted integral value 

of a function on a grid cell. Extending the general finite volume method, it employs a single unit template and a 

limiter method to suppress oscillations, addressing the convection-diffusion equation. By utilizing implicit 

methods for nonlinear and linear solvers of the discrete equation, the scheme achieves enhanced compactness, 

accuracy, and computational efficiency. 

Keywords: numerical format, diffusion equation, compact finite volume method 

1. Introduction 

1.1 Diffusion Equation 

An equation with the partial derivative of an unknown function  is called a partial 

differential equation u is a function of n+1 independent variables, t is the time variable,  

represents the spatial variable.  

 

Where,  is the concentration of a substance in the diffusion process, or the temperature at x and 

time t in the heat transfer process of a solid. Coefficient  is called the 

diffusion coefficient or thermal conductivity coefficient. When , the 

equation is:  

 

When n = 1 first-order diffusion (heat transfer) equation is obtained: . 

In the case n=2:  is the convective diffusion equation on the plane, where 

 represents the concentration of a substance in the flow field,  is the convective 
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term, where  is the flow rate,  is the diffusion term, k is the diffusion coefficient, k>0. 

1.2 Compact Finite Volume Method 

The numerical solution of partial differential equations (PDEs) is crucial in computational mathematics. 

High-precision schemes include the spectral method, spectral element method, compact difference scheme, 

weighted essentially non-oscillatory (WENO) scheme, discontinuous Galerkin finite element method, and 

various hybrid algorithms. This section focuses on the finite volume method (FVM), also known as the control 

volume method, which is based on the conservation of physical quantities. The computational domain is divided 

into primary and dual sections, forming non-overlapping control volumes around each grid point. Integrating the 

differential equations over each control volume results in a set of discrete equations with the unknowns being the 

values of the dependent variables at the grid points. 

FVM ensures local conservation but often complicates convergence analysis due to phase error considerations. 

The compact finite volume method, a high-precision scheme derived from discretizing equations using the finite 

volume approach based on difference schemes, combines the advantages of FVM with ease of solution. 

2. Results and Discussions 

2.1 Construction of Compact High Order Finite Volume Schemes 

Paper (Xuan LJ & Wu JZ, 2010) presents a high-order numerical scheme for solving hyperbolic conservation 

law equations based on weighted integrals. We will draw on the idea of recording the weighted integral value of 

the function on the grid cell to give a compact high order finite volume method. The differences in the papers 

(Xuan LJ & Wu JZ, 2010) are as follows: 

(1) The multi-unit template is used in the papers (Xuan LJ & Wu JZ, 2010) to construct the high-order format, 

and we will use the template of a single unit. In this case, the recorded information of each unit needs to be 

increased correspondingly when constructing the high-order format. The advantages are that the format has 

better compactness, convenient parallel computation and easy to maintain the precision at the boundary;  

(2) Paper (Xuan LJ & Wu JZ, 2010) uses the idea of weighted intrinsically non-oscillatory scheme (WENO) (Liu 

XD, Osher S & Chan T, 1994) for reference to suppress the oscillation of numerical solutions at discontinuities. 

This processing method requires a large amount of calculation, so we will adopt the method of limiter to 

suppress the oscillation and consider a new precision preserving limiter WBAP limiter (Li W, Ren YX, Lei G & 

Luo H, 2011; Li W & Ren YX, 2012).  

(3) Paper (Xuan LJ & Wu JZ, 2010) only considers the solution of the one-dimensional hyperbolic conservation 

law equation and adopts the third-order TVD Runge-Kutta scheme for the time direction. We will further 

consider the convection-diffusion equation. Due to the existence of the diffusion term, the stability of the explicit 

scheme requires , which brings great limitations on the time step. We will consider implicit methods. 

For implicit methods, nonlinear and linear solvers for discrete equations need to be studied.  

Next, we give the construction process of compact high order finite volume method. 

The one-dimensional convection-diffusion equation in the form of conservation law is considered. 

( ) , [ , ], 0,+ =  t x xxu f u Du x a b t                           (1) 

Where f(u) is the flux function,  is the diffusion coefficient, and  is the function to be solved. 

When , is the linear convection equation, where a is the convection velocity. When , 

the equation is Burgers equation with diffusion term. 

As shown in Figure 1, the interval [a,b] is first divided into N parts: 

 

 

Figure 1. Mesh generation 
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Define grid cell: 1 1
2 2

[ , ]i i i
I x x

− +
= , then cell center is ix = 1 1

2 2

1
( , )

2 i i
x x
− +

, grid size is 1 1
2 2

i i i
x x x

+ −
 = − . For 

simplicity, let’s use a uniform grid, i.e. , 1, 2, ,i

b a
x i N

N

−
 = = . 

On each cell, we record the integration of the function  to be solved with a set of weight functions:  

( , ) ( ) ,
ii

k k k

i i i II
v u x t x dx u =                              (2) 

Where,  ( ) , 0,1, ,k

i x k K =  is a given set of linearly independent test functions, and the notation 
iI

   

represents the integral on the cell . Taking equation (1)  and integrating it over the unit gives 

2

2
( ) ( ) ( ) ( )

 
+ =

   
i i i

k k k

i x i i
I I I

u u
x dx f u x dx D x dx

t x
                    (3) 

Integration by parts gives us the following weak-form equation  

( ) ( )




  
+ − = −

    
i i i

i

k k k
k ki i i
i iI I I

I

dv u u
f u f u dx D D dx

dt x x x x

 
               (4) 

In order to solve equation (4), we need to know the values of  and  at the cell boundary , and 

we also need to compute the integral on both cells. The basic idea is to use the  of unit  to reconstruct the 

polynomial expression of  on unit , and then calculate the required result. The time direction was solved by 

the third-order TVD Runge-Kutta method. 

For ordinary differential equations, the third-order TVD Runge-Kutta method is: 

(1)

(2) (1) (1)

1 (2) (2)

( )

3 1 1
( )

4 4 4

1 2 2
( )

3 3 3

n n

n

n n

u u tL u

u u u tL u

u u u tL u+

= + 

= + + 

= + + 

 

Where t  is the time step and 
nu represents the value u at the moment n t . 

 

 

Figure 2. 

 

As shown in Figure 2, for the function values of  and  on , we can use  to 

reconstruct an approximate polynomial of  by interpolation. According to the need of calculation accuracy, 
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different K can be used to construct different order of  interpolation polynomials, so as to get different 

precision formats. Generally speaking, when the reconstructed polynomial of  is p-1, the numerical scheme 

constructed is p-order method.  

Below we derive the construction of second -, third -, fourth - and sixth-order numerical schemes. Define local 

coordinate , thus 

1

2
1

2

( ) ( ) ( ) ( )
i

k k k

i i i
I

v u x x dx x u d    
−

= =   , 

Equation (4) turns to: 

1
1 11 2
2 22

1 1 1
1

2 2 2
2

1 1
( ) ( ( ))

− − −
−

  
+ − = −

      
k k k

k ki i i
i i

dv u u
f u f u d D D d

dt x x

 
    

   
         (5) 

The test function is selected as the simplest non-dimensional polynomial form: 

0 1
i

x
 =

 ， 

1

2

1

( )

i
i

x x

x x
 

−
= =

  ， 

2
2 2

3

( ) 1
,

( )

i
i

x x

x x
 

−
= =

   

3 4
3 3 4 4

4 5

( ) ( )1 1
, ,

( ) ( )

− −
= = = =

   

i i
i i

x x x x

x x x x
   

 

Accordingly, equation (5) turns to: 

( )

0

1/2 1/2 1/2 1/2

2
,+ − + −− −

+ =
 

i i i i idv f f h h
D

dt x x
                         (6) 

( )

1 11

1/2 1/2 1/2 1/22 2
1 12 2

2 2

1 1
( ( )) ,

2 ( )2
  


+ − + −

− −

+ + 
+ − = −

   
 

i i i i idv f f h h u
f u d D D d

dt x x xx
        (7) 

( )

1 12

1/2 1/2 1/2 1/22 2
1 12 2

2 2

2 2
( ( )) ,

4 ( )4
    


+ − + −

− −

− − 
+ − = −

   
 

i i i i idv f f h h u
f u d D D d

dt x x xx
      (8) 

( )

1 13
2 21/2 1/2 1/2 1/22 2

1 12 2

2 2

3 3
( ( )) ,

8 ( )8

+ − + −

− −

+ + 
+ − = −

   
 

i i i i idv f f h h u
f u d D D d

dt x x xx
    


     (9) 

( )

1 14
3 31/2 1/2 1/2 1/22 2

1 12 2

2 2

4 4
( ( )) ,

16 ( )16

+ − + −

− −

− − 
+ − = −

   
 

i i i i idv f f h h u
f u d D D d

dt x x xx
    


    (10) 

( )

1

11/2 1/2 2
1

2

1

11/2 1/2 2
12 2

2

( 1)
( ( ))

2

( 1)

( )2

−+ −

−

−+ −

−

− −
+ − =

 

− − 
−

 





k k
ki i i

k

k
ki i

k

dv f f k
f u d

dt x x

h h k u
D D d

xx

  

 


              (11) 
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Note: 

1) Since 
0 0 1

( ) ( ) ( )= = =
 

i i
i i i

I I
v u x x dx u x dx u

x
 , when only 

0

iv , which is the average value iu  of u 

on the cell is recorded, the method is reduced to a standard finite volume scheme, i.e., Equation (6). 

2) At , the left-value function 1/2
1
2

( )+ = =L

i iu u  is usually different from the right-value function 

1/2 1
1
2

( )+ += = −R

i iu u . In order to maintain the conservation of numerical formats. The numerical flux at 

 is calculated by using the Lax-Friedrichs flux function. 

1/2 1/2 1/2( , )+ + += L R

i i if f u u                               (12) 

Here 
1

( , ) [ ( ) ( ) ( )],
2

= + − −f a b f a f b b a where max | ( ) |= u f u . 

When ( ) =f u cu , 
1/2

1/2

1/2

, 0

, 0

+

+

+

 
= 



L

i

i R

i

cu c
f

cu c
 is the exact windward flux. 

3) At , the left-value and the right-value of the derivative 1/2( ) +




i

u

x
 are also different. We need to 

figure out the diffusion flux at  according to 1/2( ) +





L

i

u

x
 and 1/2( ) +





R

i

u

x
, which is 

1/2 1/2 1/2( ) , ( )+ + +

  
=  

  

L R

i i i

u u
h h

x x
. The calculation of the diffusion flux with respect to derivatives is still 

a developing and improving technique. Depends on the exact solution of diffusive generalized Riemann 

problem (dGRP) of one-dimensional heat conduction equation, paper (Gassner G, Lörcher F & Munz CD, 

2007) derive a diffusion flux calculation method that suitable for finite volume and discontinuous Galerkin 

(DG) method. In paper (Wang Q, Ren YX, Pan J & Li W, 2017), it is further extended to the finite volume 

method of Navier-Stokes equations to solve the viscous flux. Following the ideas in paper (Gassner G, 

Lörcher F & Munz CD, 2007; Wang Q, Ren YX, Pan J & Li W, 2017), the following formula is used to 

calculate the diffusion flux: 

1/2 1/2 1/2 1/2 1/2

1 1
( ) ( ) ( ),

2 2 
+ + + + +

  
= + + − 

   

L R R L

i i i i i

u u
h u u

x
              (13) 

Where max{ , } =  L Rx x x . 

The above is the construction process of the whole numerical scheme, it can be seen that it is an extension of the 

general finite volume method, we call it compact high order finite volume method. Next, we give the 

construction process of specific numerical schemes of different orders and the formula of flux calculation. 
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(1) Construction of second order scheme  

Each cell records two values . Assuming , using  to reconstruct 

undetermined coefficients  

 

Defined by , have 

1 1

0 2 2
1 1 0 1 0

2 2

1
( ) ( )   

− −
= = = + =

  
i

i
I

v u x dx u d c c d c
x

 

1 1

1 22 2
1 1 0 1 1

2 2

1
( ) ( )

12


     

− −
= = = + =

  
i

i
I

v u x dx u d c c d c
x

 

Thus, the reconstruction polynomial on element i can be written as: 
0 1( ) 12= +i i iu v v  .                                  (14) 

Therefore, there has: 

0 1 0 1

1/2 1/2

1 1

1/2 1/2

1 1
2 2

1 1
2 2

( ) 6 , ( ) 6 ,

( ) ( ) ( ) 12 ( ) ( ) ( ) 12

+ −

+ −

= = + = − = −

   
= = = − =

   
， ，

L R

i i i i i i i i

L R

i i i i i i

u u v v u u v v

u u u u
v v

   

 

By substituting in equation (13), (14), numerical flux 1/2+if  and diffusion flux 
1/2+ih  can be calculated 

respectively. For the volume fraction in equation (7), by calculating: 

1 1

0 1 02 2
1 1

2 2

1 1 1
12 2

1 12 2 2

2 2

1 1 1
( ) ( 12 )

121 1
12

( ) ( ) ( )

   

 


− −

− −

= + =
  


= =

   

 

 

i i i

i
i

u d v v d v
x x x

vu
d v d

x x x

 

Substituting into equation (6), (7), gives a second-order format. 

(2) Construction of third-order scheme 

Each cell records three values , assuming , using 

 to reconstruct undetermined coefficients  
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Defined by , have 

1 1

0 22 2
1 1 0 1 2 0 2

2 2

1 1
( ) ( )

12i
i

I
v u x dx u d c c c d c c

x
    

− −
= = = + + = +

    

1 1

2 32 2
1 1 0 1 2 1

2

1

2

1 1
( ) ( )

12iI
i u x dx u dv c c c d c

x
       

− −
= = = + + =

    

1 1

2 2 2 2 3 42 2
1 1 0 1 2 0 2

2 2

1 1 1
( ) ( )

12 80iI
i u x dx u d cv c c d c c

x
       

− −
= = = + + = +

    

After solving, it obtains: 

0 2

0

1

1

0 2

2

9
15 ,

4

12 ,

15 180

i i

i

i i

v v

v

c

v

c

c v

= −

=

= − +

 

Thus, the reconstruction polynomial on element i can be written as: 

0 2 1 0 2 29
( ) 15 12 ( 15 180 )

4
= − + + − +i i i ii iu v v v v v    

Therefore, there has: 

0 1 2

1/2

0 1 2

1/2

0 1 2

1/2

0 1 2

1/2

1
2

1
2

1
2

1
2

3
( ) 6 30 ,

2

3
( ) 6 30 ,

2

( ) ( ) ( ) 15 12 180

( ) ( ) ( ) 15 12 180

+

−

+

−

= = − + +

= − = − − +

 
= = − + +

 

 
= − = + −

 

，

，

L

i i

R

i i

L

i

i i

i i i

i i

i i i

i i

R

i i i

v v v

v v v

u u

u u

u u

u

v v v

v
u

v v

 

 

 

By substituting in equation (13), (14), numerical flux 1/2+if  and diffusion flux 
1/2+ih  can be calculated 

respectively. For the volume fraction in equation (7), (8), by calculating: 

1

02
1

2

1 1

2
12 2

2

1 1
( )

121

( ) ( )

i

i

u d v
x x

vu
d

x x

 




−

−

=
 


=

  





 

1

12
1

2

1

0 22
12 2

2

2 2
( )

2 1
( 5 60 )

( ) ( )

i

i i

u d v
x x

u
d v v

x x

  

 


−

−

=
 


= − +

  





 

Substituting into equation (6), (7), (8), gives a third-order format. 
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(3) The construction of the fourth-order scheme 

Each cell records three values , and the reconstruction polynomial on cell i can be obtained: 

0 1 2 3

1/2

0 1 2 3

1/2

0 1 2 3

1/2

0 1 2 3

1/2

1
2

1
2

1
2

1
2

3
( ) 15 30 140 ,

2

3
( ) 15 30 140 ,

2

( ) ( ) ( ) 15 240 180 1680

( ) ( ) ( ) 15 240 180 1680

+

−

+

−

= = − − + +

= − = − + + −

 
= = − − + +

 

 
= − = − − +

 

，

，

i i i i

i i i i

i i i i

i i i

L

i i

R

i i

L

R

i i

i i

i

u v v v v

v

u

v v v

v v v v

v v

u

v

u u

u

u u
v

 

 

 

By substituting in equation (13), (14), numerical flux 1/2+if  and diffusion flux 
1/2+ih  can be calculated 

respectively. For the volume fraction in equation (7), (8), (9) by calculating: 

1

02
1

2

1 1 3

2
12 2

2

1 1
( )

30 2801

( ) ( )

i

i i

u d v
x x

v vu
d

x x

 




−

−

=
 

− +
=

  





 

1

12
1

2

1

0 22
12 2

2

2 2
( )

2 1
( 5 60 )

( ) ( )

i

i i

u d v
x x

u
d v v

x x

  

 


−

−

=
 


= − +

  





 

1

2 22
1

2

1

2 1 32
12 2

2

3 3
( )

3 3 19
( 70 )

( ) ( ) 2

i

i i

u d v
x x

u
d v v

x x

  

 


−

−

=
 


= − +

  




 

Substituting into equation (6), (7), (8), (9), gives a fourth-order format. 

(4) The construction of the sixth-order scheme 

Each cell records three values , and the reconstruction polynomial on cell i can be 

obtained: 

0 2 4 1 3 5

0 2 4 2 1 3 5 3

0 2 4 4 1 3 5 5

225 525 945 3675 6615
( ) ( 10395 )

64 8 4 16 2

525 6615
( 2205 9450 ) ( 56700 194040 )

8 2

945
( 9450 44100 ) (10395 194040 698544 )

4

= − + + − + +

− + − + − + − +

− + + − +

i i i i i i

i i i i i i

i i i i i

i

i

u v v v v v v

v v v v v v

v v v v v v

 

 

 
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0 1 2 3 4 5

1/2

0 1 2 3 4 5

1/2

0 1 2 3 4 5

1/2

1
2

1
2

1
2

15 105
( ) 105 630 +630 +2772 ,

8 4

15 105
( ) 105 630 +630 2772 ,

8 4

105 1995
( ) ( ) ( ) 2520 21420 +12600 +83160 ,

2 2

(

+

−

+

= = + − −

= − = − − + −

 
= = + − −

 





i

L

i i

R

i

i

i i i i i i

i i i i i

i i i i i

i

i

L

i

u u v v v v v v

u u v v v v v v

u u
v v v v v v

u

 

0 1 2 3 4 5

1/2
1
2

105 1995
) ( ) ( ) 2520 21420 12600 +83160 ,

2 2
−


= − = − + + − −


i ii i i i

R

i i

u
v v v v v v

 

 

By substituting in equation (13), (14), numerical flux 1/2+if  and diffusion flux 
1/2+ih  can be calculated 

respectively. For the volume fraction in equation (7), (8), (9), (10), by calculating: 
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u
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x x
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
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Substituting into equation (6), (7), (8), (9), (10) gives a sixth-order format. 

2.2 Numerical Example 

In this section, we will list some numerical examples to verify the validity of the compact higher-order finite 

volume scheme and prove the correctness of the theoretical analysis. 

Example 1: linear advection equation 

Consider a linear advection equation: 
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, periodic boundary condition 

 

exact solution  

time integration TVD RK3, ,  

Solving by MATLAB, we can obtain the numerical format and data comparison of each order. It can be shown 

by Figure 3 and Table 1. The codes of solving this example will be in appendix. 

 

 

(a) The calculation result of Δx = 0.1 

 

(b) The calculation result of Δx = 0.05 
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(c) The calculation result of Δx = 0.01 

Figure 3. Numerical calculation results compare with exact solution of example 1 

 

Table 1. Error and order of example 1 with different Δx 

format    L1 Error order  Error order 

Second-order 

1/20  20 3.61E-02  5.58E-02  

1/40  40 6.00E-03 2.59 9.40E-03 2.57 

1/80  80 1.08E-03 2.47 1.70E-03 2.47 

1/160  160 2.17E-04 2.32 3.42E-04 2.31 

1/320  320 4.86E-05 2.16 7.48E-05 2.19 

1/640  640 1.11E-05 2.13 1.74E-05 2.10 

third-order 

1/20  20 6.69E-04   1.03E-03   

1/40  40 8.17E-05 3.03 1.29E-04 3.00 

1/80  80 1.03E-05 2.99 1.61E-05 3.00 

1/160  160 1.28E-06 3.01 2.02E-06 2.99 

1/320  320 1.61E-07 2.99 2.52E-07 3.00 

1/640  640 2.01E-08 3.00 3.15E-08 3.00 

fourth-order 

1/20  20 2.28E-05  3.52E-05  

1/40  40 1.39E-06 4.04 2.16E-06 4.03 

1/80  80 8.68E-08 4.00 1.36E-07 3.99 

1/160  160 5.43E-09 4.00 8.52E-09 4.00 

1/320  320 3.43E-10 3.98 5.38E-10 3.99 

1/640  640 2.62E-11 4.04 4.10E-11 4.03 

sixth-order 

1/20  20 1.85E-08  2.85E-08  

1/40  40 2.97E-10 5.96 4.60E-10 5.95 

1/80  80 8.79E-12 5.08 1.36E-11 5.08 

1/160  160 6.15E-12 0.52 9.59E-12 0.50 

1/320  320 1.81E-11  1.88E-11  

1/640  640     
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Example 2: convection diffusion equation 

Consider a convection diffusion equation: 

 

The exact solution to this problem is  

a=1.0, , time integration TVD RK3, . 

Solving by MATLAB, we can obtain the numerical format and data comparison of each order. It can be shown 

by Figure 2 and Table 2. The codes of solving this example will be in appendix. 

 

 

(a) The calculation result of Δx = 0.1 

 

 

(b) The calculation result of Δx = 0.05 
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(c) The calculation result of Δx = 0.01 

Figure 4. Numerical calculation results compare with exact solution of example 2 

 

Table 2. Error and order of example 2 with different Δx 

format  /   L1 Error order  Error order 

Second-order 

1/20  20 1.26E-02  1.95E-02  

1/40 1 40 3.07E-03 2.04 4.85E-03 2.01 

1/80 1/2 80 7.72E-04 1.99 1.21E-03 2.00 

1/160 1/4 160 1.95E-04 1.99 3.06E-04 1.98 

1/320 1/8 320 4.89E-05 2.00 7.68E-05 1.99 

1/640  640     

third-order 

1/20 1/2 20 7.23E-04  1.12E-03  

1/40 1/2 40 9.05E-05 3.00 1.43E-04 2.97 

1/80 1/4 80 1.11E-05 3.03 1.75E-05 3.03 

1/160 1/8 160 1.38E-06 3.01 2.17E-06 3.01 

1/320 1/16 320 1.72E-07 3.00 2.70E-07 3.01 

1/640  640     

fourth-order 

1/20 1/2 20 3.61E-05  5.58E-05  

1/40 1/4 40 2.05E-06 4.14 3.22E-06 4.12 

1/80 1/8 80 1.18E-07 4.12 1.86E-07 4.11 

1/160 1/16 160 7.07E-09 4.06 1.11E-08 4.07 

1/320 1/32 320 4.55E-10 3.96 7.15E-10 3.96 

1/640  640     

sixth-order 

1/20  20     

1/40  40     

1/80  80     

1/160  160     

1/320  320     

1/640  640     
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3. Application 

In this chapter, we will induce the work and application of limiters, and research the influence of limiters of 

formats in different situations. 

3.1 Limiters’ Works and Different Limiters 

The work of the limiter is generally divided into two parts: catching the troubled cell and reconstructing the 

troubled cell. 

Then we introduce some common limiters. 

1) Limiter TVB based on minmod function (TVB) 

We provide an overview of minmod limiter in the one -dimensional scalar case. First, denote that 

 to be the cell average of the solution . 

Further denote , . 

 and  are modified either by the usual minmod limiters, 

, , 

where ,   , 

with the minmod function m defined by 

 

or by the TVB modified minmod function 

 

The TVB parameter M should be chosen depending on the solution of the problem. 

2) Limiter WENO 

To make the weighted intrinsically non-oscillating scheme easier to understand, we divide it into five steps. 

(For a troubled cell ) 

Step 1: Note the polynomial on K to be , the right, left, up and down polynomials of its four neighbors are 

denoted as . 

Step 2: Set  to be the average value of the cell. We update the constant terms of 

 such that their new cell averages are the same as , that is: 

. For convenience, we take . The point of this is that we want to  

express  as a convex combination of , and since their cell average is all , . 

This reconstruction does not change the cell average of the polynomial over K. 

Step 3: Computed smooth indicator 

 

Where  is multi-index. 
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Step 4: Calculated weight 

.  is a very small number, take ,  is linear weight, we can choose 

, .By normalization, we get: 

 

Step 5: Obtain the reconstructed polynomial over K: 

 

Note: About the linear weight , if take a large , it can maintain the accuracy better, since when , a 

limiter is unnecessary. But if take a smaller , it can better limit shock. 

3) Limiter WBAP (paper (Li W, Ren YX, Lei G & Luo H, 2011; Li W & Ren YX, 2012)) 

3.2 Some Examples 

Example 1: Burgers equation in 2D 

The two-dimensional burgers equation is of the form: 

, or . 

Create a transformation substitute , then 

 

 

That is, , it implies that . 

That is to say,  for  satisfies a relationship similar to a 1D Burgers equation. Assume that 

, then for time , on the line , the value of  is , where 

. 

Consider a simple example: take the computing domain as , boundary condition is periodic, initial value  

be . 

When , there are two shock wave structures on  and . 

By using Newton iteration method, we can get approximate true solution. 

Let . 

4. Conclusion 

In conclusion, a novel compact high-order finite volume method, is developed based on the principles of the 

compact difference method. The validity of the proposed scheme is rigorously analyzed, and its effectiveness is 

demonstrated through comprehensive numerical experiments. These experiments yield favorable results, 

substantiating both the theoretical analysis and the practical applicability of the scheme. 
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