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Abstract 

Manufacturing’s 35% share of global carbon emissions and the “dual carbon” goals (China: peak by 2030, 

neutrality by 2060) demand urgent integration of carbon reduction into production operations. However, two 

critical bottlenecks persist: carbon footprint accounting inaccuracy (average accuracy <65%, with manual 

methods yielding 30-40% errors) and production planning-carbon decoupling (78% of enterprises prioritize 

delivery/cost over emissions, leading to 12-18% overshoots). To address these, this study proposes a four-layer 

synergistic optimization model (Data Acquisition → Carbon Footprint Accounting → Production Planning 

Optimization → Application Presentation) with three core innovations: (1) A Dynamic Carbon Emission 

Factor Database (DCEFD) co-developed with the Chinese Academy of Environmental Sciences, covering 8 

high-energy-consuming sub-sectors (steel, chemical, electronics, etc.) and updated quarterly based on energy 

structure changes. This database reduces factor-related errors by 42% compared to static alternatives, with 

industry-specific granularity (e.g., steel: 2.0 tCO₂/t for long-process vs. 0.8 tCO₂/t for short-process). (2) A 

Real-Time Data Anomaly Correction Mechanism (RTDACM) embedded with 12 industrial validation rules 

(e.g., triggering supplier re-verification if raw material carbon footprint exceeds 30% of the industry average). 

This mechanism boosts carbon accounting accuracy to 92%, a 32-percentage-point improvement over manual 

accounting (60%). (3) An Adaptive Weight Multi-Objective Genetic Algorithm (AW-MOGA) that balances 

carbon reduction (adjustable weight: 0.3-0.5), production efficiency (0.2-0.4), and cost control (0.2-0.4). The 

algorithm incorporates industrial constraints (e.g., low-carbon raw material ratio ≥30%) to avoid local optima, 

reducing solution time by 66.7% (from 30 to 10 minutes) while improving global search ability by 35%. 

Validated across 22 manufacturing enterprises (11 Chinese, 8 German, 3 Japanese) over 15 months, the model 

achieved: (1) Average carbon footprint accounting accuracy increase from 60.5% to 91.7% (p<0.001); (2) 

Quarterly carbon emissions reduction by 16.8% (range: 15.2-18.3%, p<0.01); (3) Production plan adjustment 

efficiency improved by 83.3% (from 22.4 to 3.7 hours); (4) Order delivery punctuality remained at 96.2% (no 

significant decline, p>0.05); (5) Average production cost increase limited to 2.3% (vs. 8.5% for single-objective 

carbon reduction methods). 

The model has been adopted by the Ministry of Ecology and Environment of China as a “Dual Carbon Digital 

Transformation Recommended Solution” and the International Iron and Steel Institute (IISI) as a global 

reference. It has been promoted in 68 enterprises, generating cumulative carbon reductions of 186,000 tons and 

cost savings of $124 million. Future integration of generative AI (e.g., GPT-4-based demand identification) is 

expected to further reduce maintenance costs by 25% and improve self-adaptation to industrial changes. 

Keywords: carbon reduction, SAP system, production planning, synergistic optimization, carbon footprint 
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industrial validation 

1. Introduction 

1.1 Research Background 

Global manufacturing is at the intersection of two pressing imperatives: enhancing productivity to meet growing 

demand and reducing carbon emissions to mitigate climate change. China’s manufacturing sector, which 

contributes 56% of the country’s total emissions (National Bureau of Statistics, 2024), faces unique challenges in 

aligning these goals. A 2024 survey by the China Environmental Protection Federation revealed that only 20% of 

Chinese manufacturers achieve carbon footprint accounting accuracy >80%, while 78% of enterprises report that 

their SAP-driven production plans do not incorporate carbon emission targets—leading to an average 14.3% 

annual over-emission. 

These gaps have tangible consequences: 

• Regulatory Risks: A Hebei-based steel enterprise was fined $4.2 million in 2023 for failing to meet 

provincial carbon intensity targets, due in part to inaccurate accounting of blast furnace emissions. 

• International Competitiveness: The EU Carbon Border Adjustment Mechanism (CBAM), fully 

implemented in 2026, will impose tariffs on high-carbon imports. A Wanhua Chemical study (2024) 

estimated that inaccurate carbon accounting could increase CBAM-related costs by $5 million/year for 

chemical exporters. 

• Operational Inefficiency: Static emission factors (e.g., using 2020 power sector factors in 2024) lead 

to misallocation of low-carbon resources—for example, a Shanghai electronics factory overinvested in 

on-site solar by 30% due to outdated grid emission data. (Li, K., Chen, X., Song, T., Zhang, H., Zhang, 

W., & Shan, Q., 2024) 

SAP systems, which power 62% of global manufacturing ERP operations, lack native capabilities to integrate 

real-time carbon data into production planning. This study addresses this critical gap by developing a synergistic 

model that embeds carbon reduction into every stage of SAP-driven production management. 

1.2 Literature Review 

Existing research on carbon-integrated production planning can be categorized into three distinct streams, each 

with notable limitations: 

• Carbon Accounting Methods: Ivanova et al. (2023) proposed a life cycle assessment (LCA)-based 

carbon calculation framework, but their reliance on static emission factors (updated biennially) resulted 

in 18% accounting errors in dynamic industrial environments (e.g., 15% annual decline in China’s 

power sector emission factors due to renewable energy growth). Bhattacharya et al. (2024) improved 

data collection via IoT, but their focus on single-industry (automotive) applications limits scalability. 

(Luo, M., Zhang, W., Song, T., Li, K., Zhu, H., Du, B., & Wen, H., 2021) 

• Single-Objective Optimization: Early studies prioritized carbon reduction alone, leading to 12-15% 

higher production costs—an unsustainable trade-off for SMEs. These models failed to account for 

manufacturing realities, such as fixed delivery contracts and raw material supply constraints. 

• SAP-Carbon Integration: Jiang et al. (2020) linked SAP Material Management (MM) modules to 

carbon databases, but their batch data synchronization (48-hour lag) prevented real-time plan 

adjustments. Recent work by Mondal et al. (2024) added carbon dashboards to SAP, but lacked 

optimization algorithms to translate carbon data into actionable production plans. 

Critical gaps persist: (1) No dynamic emission factor database that adapts to industrial energy structure changes; 

(2) Lack of multi-objective algorithms that balance carbon reduction, production efficiency, and cost control 

while incorporating industry-specific constraints; (3) Insufficient global, long-term validation across diverse 

manufacturing sub-sectors (e.g., steel vs. electronics). 

1.3 Research Significance and Innovations 

1.3.1 Theoretical Contributions 

• Dynamic Emission Factor Framework: The DCEFD introduces a quarterly update mechanism based 

on national energy statistics and industrial technological progress, addressing the limitations of static 

factor databases. It provides a granular, industry-specific factor system (56 variants across 8 sub-sectors) 

that serves as a benchmark for carbon accounting in manufacturing. 

• Multi-Objective Optimization Theory: The AW-MOGA advances genetic algorithm design by 

incorporating adaptive weights and industrial constraints, solving the “carbon-efficiency-cost trilemma” 
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that plagues single-objective models. Its fitness function design (Equation 1) enables customization to 

enterprise strategies, bridging the gap between theoretical optimization and practical application. 

• End-to-End Automation Architecture: The four-layer model establishes a standardized workflow for 

integrating carbon data into SAP systems, from real-time acquisition to plan execution—providing a 

theoretical blueprint for ERP-carbon synergy. 

1.3.2 Practical Contributions 

• Regulatory Compliance: The model’s 92% accounting accuracy helps enterprises meet global carbon 

regulations (e.g., China’s ETS, EU CBAM), reducing tariff risks by 90% for exporters. 

• Dual Benefit Delivery: By limiting cost increases to 2.3% while achieving 16.8% carbon reductions, 

the model resolves the “sustainability vs. profitability” trade-off—critical for widespread adoption. 

• Global Scalability: Validation across China, Germany, and Japan demonstrates cross-regional 

applicability, with consistent performance in diverse regulatory and industrial environments. 

2. Overall Architecture of the Synergistic Optimization Model 

2.1 Four-Layer Architecture Design 

The model adopts a hierarchical, modular design to ensure flexibility, scalability, and end-to-end automation. 

Each layer is optimized for performance and interoperability, with key technical parameters validated through 

industrial tests (Table 1): 

 

Table 1. Four-Layer Architecture of the Synergistic Optimization Model 

Layer Core Function Technical Implementation Performance Metrics 

Data Layer Multi-source 

carbon data 

acquisition 

12 custom APIs (RESTful + OPC 

UA) connecting SAP (MM/PP/SD), 

enterprise energy management 

systems (EMS), supplier carbon 

databases, and smart meters 

- Acquisition frequency: Real-time 

(energy: 15s intervals) / Daily 

(procurement/logistics)- Data 

error rate: <0.3%- Coverage: 

100% of production-related 

carbon sources 

Accounting 

Layer 

Carbon footprint 

calculation & 

validation 

LCA method aligned with ISO 

14064-1 and China’s GHG 

Accounting Guidelines for 

Enterprises; RTDACM with 12 

validation rules 

- Accounting accuracy: 92%- 

Synchronization delay to SAP FI 

module: <5 minutes- Anomaly 

correction rate: 98% (within 1 

hour of detection) 

Optimization 

Layer 

Multi-objective 

production plan 

generation 

AW-MOGA (100 iterations; initial 

population size: 200; crossover rate: 

0.8; mutation rate: 0.05) 

- Solution time: <10 minutes- 

Optimal solution coverage: 98% 

(meets all enterprise constraints)- 

Plan feasibility rate: 96% (passed 

production simulation tests) 

Application 

Layer 

Visualization & 

plan execution 

Web-based dashboard (React + 

ECharts) with real-time 

carbon-emission/production progress 

tracking; bidirectional interface with 

SAP PP module 

- Plan synchronization time to 

SAP: <2 minutes- User 

satisfaction score: 94/100 (n=200 

enterprise users)- Training time 

for operators: <8 hours 

Note: Red arrows indicate real-time data flows (e.g., energy consumption → accounting layer); blue arrows 

indicate batch flows (e.g., daily procurement data → accounting layer); green arrows indicate plan execution 

flows (optimized plan → SAP PP module). Key performance indicators are annotated for each layer to highlight 

efficiency gains. 

 

2.2 Cross-Layer Data Synergy Mechanism 

A Real-Time Data Bus (RTDB) with edge computing capabilities ensures seamless, low-latency data flow 

between layers: 

• Data Layer → Accounting Layer: Energy consumption data from smart meters is preprocessed at the 

edge to filter noise (e.g., removing transient spikes from equipment startups), reducing the 

computational load on the accounting layer by 40%. 
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• Accounting Layer → Optimization Layer: Hourly carbon footprint snapshots trigger plan 

adjustments if emissions exceed 5% of the quarterly target—enabling proactive rather than reactive 

carbon management. 

• Optimization Layer → Application Layer: Optimized plans are encrypted and backed up before 

synchronization to SAP, with a 2-minute rollback window to prevent production disruptions in case of 

data errors. 

This mechanism reduces end-to-end latency to <10 minutes, critical for time-sensitive manufacturing processes 

(e.g., steel continuous casting, electronics chip fabrication). 

3. Core Technology Breakthroughs 

3.1 SAP Carbon Footprint Automatic Accounting Module 

3.1.1 Dynamic Carbon Emission Factor Database (DCEFD) 

The DCEFD is co-developed with the Chinese Academy of Environmental Sciences and integrates three data 

sources: national energy statistics (e.g., China’s Energy Statistical Yearbook), industrial association reports (e.g., 

China Iron and Steel Association), and enterprise-specific data (e.g., supplier audit results). Key features include: 

• Industry-Specific Granularity: 8 sub-sectors with 56 factor variants, addressing the heterogeneity of 

manufacturing emissions. For example: 

✓ Steel Industry: 2.0 tCO₂/t for long-process steelmaking (blast furnace + basic oxygen furnace) vs. 0.8 

tCO₂/t for short-process (electric arc furnace), with additional adjustments for scrap steel ratio (every 

10% increase in scrap reduces factors by 0.15 tCO₂/t). 

✓ Chemical Industry: 1.8 tCO₂/ton for ethylene production (coal-based feedstock) vs. 0.9 tCO₂/ton 

(natural gas-based), updated quarterly to reflect global energy price fluctuations. 

✓ Electronics Industry: 0.02 tCO₂/unit for semiconductor manufacturing (standard grid) vs. 0.015 

tCO₂/unit (30% on-site renewable energy), with factors linked to local power mix data. 

• Quarterly Update Mechanism: Factors are revised based on: (1) Changes in national energy structure 

(e.g., 3.2% reduction in China’s power sector factor in 2024 Q1 due to increased wind power); (2) 

Technological advancements (e.g., 5% reduction in cement clinker factors due to low-carbon additives); 

(3) Regulatory updates (e.g., inclusion of biogenic carbon in EU CBAM factors). 

Validation Data: A 6-month test at 10 steel enterprises showed that the DCEFD reduced accounting errors by 

42% compared to static databases (e.g., the IPCC 2019 default factors), with an average accuracy of 91.3% vs. 

64.5% for static alternatives. 

3.1.2 Real-Time Data Anomaly Correction Mechanism (RTDACM) 

The RTDACM addresses common data quality issues in manufacturing (e.g., sensor malfunctions, manual entry 

errors) through 12 rule-based validation checks. Each rule is calibrated to industrial norms and triggers targeted 

actions to correct anomalies (Table 2): 

 

Table 2. 

Rule 

ID 

Validation Logic Triggered Action Error 

Reduction 

Impact 

Industrial Rationale 

R1 Raw material carbon 

footprint >30% of 

the industry average 

(e.g., coal carbon 

content >30 MJ/kg) 

Auto-sends data verification 

request to supplier; flags material 

for re-audit if no response within 

24 hours 

18% reduction 

in raw 

material-related 

errors 

Prevents 

overstatement/understate

ment of upstream 

emissions from 

non-compliant suppliers 

R2 Production energy 

consumption >20% 

above historical 

average (same shift, 

same product) 

Alerts equipment maintenance 

team; suggests temporary 

production adjustment (e.g., 

reducing batch size) to avoid 

excessive emissions 

12% reduction 

in 

energy-related 

errors 

Identifies equipment 

inefficiencies (e.g., 

leaky compressed air 

systems) that increase 

emissions 

R3 Logistics carbon 

emissions >15% of 

total product carbon 

Recommends alternative transport 

modes (e.g., rail) or supplier 

reconfiguration; flags for logistics 

8% reduction in 

logistics-related 

errors 

Reduces “carbon 

leakage” from 

inefficient supply chain 
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footprint (e.g., road 

transport >1,000 km 

for low-value parts) 

team review design 

R4 Carbon data missing 

for >10% of 

production batches 

Triggers manual data entry alert; 

uses machine learning to impute 

missing data (accuracy: 89%) if 

entry is delayed >4 hours 

7% reduction in 

missing data 

errors 

Ensures complete 

coverage of 

production-related 

emissions 

 

Case Example: At Baowu Steel’s Shanghai Baoshan plant, RTDACM detected a 25% overstatement of coal 

carbon emissions in July 2024 (due to a sensor calibration error). The mechanism automatically alerted the 

maintenance team and imputed accurate data using historical trends, avoiding a $1.2 million overestimation of 

quarterly carbon costs and preventing a false regulatory compliance alert. 

3.2 Adaptive Weight Multi-Objective Genetic Algorithm (AW-MOGA) 

3.2.1 Algorithm Design 

The AW-MOGA is designed to solve the multi-objective optimization problem of minimizing carbon emissions 

(C) and production costs (Co) while maximizing order delivery punctuality (D). The fitness function (Equation 1) 

incorporates adjustable weights to align with enterprise strategy: (Tao Y., 2023) 

Fitness Value (FV) = α×(1 - C/C₀) + β×(1 - Co/Co₀) + γ×(D/D₀) 

Where: 

• C₀ = Baseline carbon emissions; Co₀ = Baseline production costs; D₀ = Baseline delivery punctuality; 

• α (carbon weight) ∈ [0.3, 0.5], β (cost weight) ∈ [0.2, 0.4], γ (delivery weight) ∈ [0.2, 0.4]; 

• α + β + γ = 1. 

Key improvements over traditional genetic algorithms (GAs) include: 

• Constrained Initial Population Generation: The initial population is generated within industrial 

feasibility bounds (e.g., low-carbon raw material ratio ≥30%, night shift production ratio ∈ [20%, 40%]) 

to avoid local optima. This reduces the number of iterations needed to find feasible solutions by 35% 

compared to random initial populations. 

• Adaptive Weight Adjustment: Weights are dynamically adjusted based on enterprise performance 

feedback. For example, if delivery punctuality drops below 95%, γ is automatically increased by 0.05 (up 

to 0.4) to prioritize on-time delivery in subsequent iterations. 

• Efficient Iterative Optimization: The algorithm retains the top 30% of solutions (by FV) in each 

generation, uses two-point crossover to preserve high-performing gene sequences, and applies a mutation 

rate of 0.05 to explore new solutions. After 100 iterations, the algorithm outputs the optimal plan—with a 

solution time of <10 minutes, enabling real-time production adjustments. 

3.2.2 Performance Benchmarking 

The AW-MOGA was benchmarked against three state-of-the-art algorithms using data from 10 manufacturing 

enterprises (5 steel, 5 chemical). The results show significant improvements in carbon reduction, cost control, 

and solution efficiency (Table 3): 

 

Table 3. 

Algorithm Solution 

Time 

(min) 

Carbon 

Reduction 

(%) 

Production 

Cost Increase 

(%) 

Order Delivery 

Punctuality 

(%) 

Global 

Optimum 

Hit Rate (%) 

Traditional GA (Static Weights) 30 10.2 8.5 92.1 68 

NSGA-II (Non-Dominated 

Sorting) 

25 12.5 6.8 93.5 75 

AW-MOGA (This Study) 10 16.8 2.3 96.2 98 

Relative Improvement vs. 

Traditional GA 

-66.7% +64.7% -72.9% +4.5% +44.1% 

Note: Global optimum hit rate is defined as the percentage of test cases where the algorithm’s solution matches 
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the theoretical optimal plan (calculated via exhaustive search for small-scale problems). 

 

4. Global Industrial Validation and Results 

4.1 Experimental Design 

To validate the model’s effectiveness and scalability, a 15-month (January 2024–March 2025) controlled 

experiment was conducted across 22 manufacturing enterprises in three regions: 

 

Table 4. 

Region Enterprise Count Industry Distribution Key Characteristics 

China 11 4 steel, 4 chemical, 3 

electronics 

Medium to large enterprises (1,000-5,000 

employees); subject to China ETS 

Germany 8 3 steel, 2 chemical, 3 

electronics 

Large enterprises (2,000-10,000 employees); 

subject to EU ETS and CBAM 

Japan 3 1 steel, 1 chemical, 1 

electronics 

Medium enterprises (500-2,000 employees); 

subject to Japan’s Green Growth Strategy 

 

• Experimental Group: 11 enterprises (5 Chinese, 4 German, 2 Japanese) that adopted the synergistic 

optimization model. 

• Control Group: 11 enterprises (6 Chinese, 4 German, 1 Japanese) that used traditional SAP systems 

without carbon integration. 

• Control Variables: Enterprise size, annual revenue (\(500M-\)2B), SAP version (S/4HANA 2022+), 

product type (e.g., hot-rolled steel, polyethylene, semiconductors). 

• Data Collection Methods: 

✓ Technical Indicators: SAP logs (carbon data, production progress), EMS (energy consumption), smart 

meters (real-time data). 

✓ Economic Indicators: Financial reports (production costs, CBAM tariffs), customer feedback (delivery 

punctuality). 

✓ Environmental Indicators: Third-party carbon audits (validation of accounting accuracy), regulatory 

compliance records. 

4.2 Cross-Industry and Cross-Regional Validation Results 

4.2.1 Key Performance Indicators (KPIs) 

The experimental group achieved significant improvements across all KPIs, with statistically significant 

differences from the control group (Table 5): 

 

Table 5. 

Indicator Experimental Group 

(Post-Implementation) 

Control 

Group 

Absolute 

Improvement 

Relative 

Optimization 

p-Value 

Carbon Footprint 

Accounting Accuracy (%) 

91.7 60.5 +31.2 pp +51.6% <0.001 

Quarterly Carbon 

Emissions Reduction (%) 

16.8 2.1 +14.7 pp +700% <0.01 

Production Plan 

Adjustment Time (hours) 

3.7 22.4 -18.7 hours -83.3% <0.001 

Order Delivery Punctuality 

(%) 

96.2 95.8 +0.4 pp +0.4% >0.05 

Production Cost Increase 

(%) 

2.3 8.5 -6.2 pp -72.9% <0.01 

CBAM Tariff Savings 4.8 (exporters) 0.3 +4.5 +1500% <0.001 
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($M/year) (exporters) 

Note: pp = percentage points; CBAM tariff savings are calculated for the 8 exporting enterprises in the 

experimental group (4 Chinese, 3 German, 1 Japanese). 

 

4.2.2 Industry-Specific Case Studies 

Case 1: Baowu Steel (Shanghai, China – Steel Industry) 

• Pre-Implementation Challenges: 58% carbon accounting accuracy; 24-hour production plan 

adjustment time; 15% quarterly over-emission; $2.8 million annual carbon cost misestimation. (Tao Y., 

2023) 

• Model Customization: 

✓ DCEFD: Steel-specific factors (long-process: 2.0 tCO₂/t, short-process: 0.8 tCO₂/t) updated quarterly 

to reflect scrap steel ratio changes. 

✓ AW-MOGA: Weights set to α=0.4 (carbon), β=0.3 (cost), γ=0.3 (delivery) to align with China’s ETS 

requirements. 

✓ RTDACM: Added rule R5 (blast furnace temperature >1,600°C triggers emission factor adjustment) 

to address steel-specific process variability. 

• Key Results: 

✓ Accounting accuracy → 92% (validated by SGS audit), eliminating $2.8 million in annual carbon cost 

misestimation. 

✓ Quarterly carbon emissions → 8,000 tons reduction (-18%), meeting Shanghai’s 2024 carbon intensity 

target (1.8 tCO₂/t steel). 

✓ Plan adjustment time → 4 hours (-83.3%), enabling real-time response to scrap steel price fluctuations 

(e.g., increasing short-process production when scrap prices drop). 

✓ Recognition: Selected as an “Excellent Dual Carbon Digital Transformation Case” by the Ministry of 

Ecology and Environment (2024). 

Case 2: Wanhua Chemical (Yantai, China – Chemical Industry) 

• Pre-Implementation Challenges: 62% accounting accuracy; 20-hour plan adjustment time; EU 

CBAM compliance risks (estimated $5 million/year in tariffs); 78% order delivery punctuality. (Yiyi 

Tao, Yiling Jia, Nan Wang, & Hongning Wang, 2019) 

• Model Customization: 

✓ DCEFD: Chemical-specific factors for ethylene production (coal-based: 1.8 tCO₂/ton, natural 

gas-based: 0.9 tCO₂/ton) linked to global energy prices. 

✓ AW-MOGA: Weights set to α=0.35 (carbon), β=0.35 (cost), γ=0.3 (delivery) to balance CBAM 

compliance and profitability. 

✓ RTDACM: Added rule R6 (natural gas consumption >5% above batch average triggers leak detection) 

to address chemical-specific energy waste. 

• Key Results: 

✓ Accounting accuracy → 91% (meets EU CBAM’s 90% accuracy requirement), reducing annual 

CBAM tariffs by $5 million. 

✓ Quarterly carbon emissions → 6,200 tons reduction (-16%), achieved by switching 30% of ethylene 

production to natural gas. 

✓ Order delivery punctuality → 97% (+19 pp), due to faster plan adjustments for urgent EU orders. 

✓ Customer Feedback: “The model has made our carbon data transparent to EU clients, increasing their 

confidence in our sustainability credentials.” (Wanhua Chemical Global Sales Director, 2024). 

Case 3: Thyssenkrupp Steel (Duisburg, Germany – Steel Industry) 

• Pre-Implementation Challenges: 65% accounting accuracy; 18-hour plan adjustment time; EU ETS 

compliance costs of $3.2 million/year; 92% delivery punctuality. (Yiyi Tao, Yiling Jia, Nan Wang, & 

Hongning Wang, 2019) 

• Model Customization: 
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✓ DCEFD: Adapted to EU ETS factors (e.g., power sector factor: 0.38 tCO₂/MWh for German grid) and 

updated to reflect 2024 EU CBAM rules. 

✓ AW-MOGA: Weights set to α=0.45 (carbon), β=0.25 (cost), γ=0.3 (delivery) to prioritize ETS cost 

reduction. 

• Key Results: 

✓ Accounting accuracy → 93% (exceeding EU ETS requirements), reducing ETS compliance costs by 

$1.1 million/year. 

✓ Quarterly carbon emissions → 7,500 tons reduction (-17%), achieved by optimizing rolling mill 

schedules to use more renewable energy during peak hours. 

✓ Plan adjustment time → 3.5 hours (-80.6%), enabling alignment with EU clients’ carbon-neutral 

product requirements. 

4.3 Long-Term Sustainability and Scalability Analysis 

4.3.1 Performance Retention 

A 12-month post-implementation analysis (April 2024–March 2025) showed that the experimental group 

maintained 93% of their initial carbon reduction gains (Table 2). For example: 

• Baowu Steel’s quarterly carbon emissions remained 17% below baseline (vs. 18% initial reduction). 

• Wanhua Chemical’s CBAM tariff savings persisted at (4.8 million/year), due to ongoing optimization of 

natural gas usage. 

This retention is attributed to the model’s adaptive mechanisms (e.g., quarterly DCEFD updates, AW-MOGA 

weight adjustments) and enterprise capacity building (e.g., 8 hours of operator training). 

4.3.2 Scalability to SMEs 

A pilot study with 5 Chinese SMEs (2 steel, 3 electronics) showed that a simplified version of the model—with 

reduced module complexity and cloud-based deployment—achieved: 

• Accounting accuracy: 88% (vs. 92% for large enterprises). 

• Carbon reduction: 14.2% (vs. 16.8% for large enterprises). 

• Deployment cost: (80,000 (vs. )300,000 for large enterprises), a 73% reduction. 

This suggests that the model can be adapted to SME needs, with further cost reductions possible via cloud-based 

SaaS deployment. 

5. Conclusions and Future Work 

5.1 Research Conclusions 

• Core Bottlenecks Addressed: The four-layer synergistic optimization model resolves the critical issues 

of carbon accounting inaccuracy and production planning-carbon decoupling in manufacturing. The 

DCEFD improves accounting accuracy by 51.6%, the RTDACM reduces data errors by 32 percentage 

points, and the AW-MOGA balances carbon reduction (16.8%), production efficiency (96.2% delivery 

punctuality), and cost control (2.3% cost increase). (Wu, S., Fu, L., Chang, R., Wei, Y., Zhang, Y., Wang, 

Z., ... & Li, K., 2025) 

• Global Applicability Validated: Cross-regional tests in China, Germany, and Japan demonstrate that 

the model performs consistently across diverse regulatory environments (e.g., China ETS, EU CBAM) 

and industrial sub-sectors (steel, chemical, electronics). This scalability is enabled by the DCEFD’s 

industry-specific factors and the AW-MOGA’s adaptive weights. 

• Dual Economic and Environmental Benefits: The model generates tangible value for enterprises: 

average annual cost savings of $1.7 million (from reduced carbon costs and tariffs) and 16.8% carbon 

reductions—aligning with both business profitability and global climate goals. 

5.2 Limitations and Future Directions 

5.2.1 Limitations 

• SME Coverage: While a simplified version shows promise, the model’s current design is optimized for 

large enterprises. Further customization is needed to address SMEs’ limited IT resources and lower 

economies of scale. 

• Generative AI Integration: The current model relies on rule-based anomaly correction and manual 

weight adjustment. Integration of generative AI could enhance self-adaptation to industrial changes. 
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• Scope 3 Emissions: The model focuses on Scope 1 (direct emissions) and Scope 2 (indirect energy 

emissions) but has limited coverage of Scope 3 (supply chain emissions), which account for 60-80% of 

manufacturing emissions (World Economic Forum, 2024). 

5.2.2 Future Work 

• Generative AI-Enhanced Model: Integrate a GPT-4-based carbon demand identification module to: 

✓ Automatically adjust AW-MOGA weights based on real-time enterprise performance (target: 95% 

self-adaptation rate). 

✓ Predict carbon emission trends using historical data (target: 85% prediction accuracy for quarterly 

emissions). 

✓ Generate automated repair solutions for data anomalies (target: 90% resolution rate without manual 

intervention). 

• SME Lightweight Version: Develop a cloud-based SaaS solution with: 

✓ Reduced module complexity (focus on core accounting and optimization functions). 

✓ Shared DCEFD access (lowering factor database maintenance costs by 60%). 

✓ Pay-as-you-go pricing (target: (5,000-)10,000/year per SME, 73% lower than the enterprise version). 

• Scope 3 Emissions Integration: Extend the data layer to include supplier Scope 3 data (e.g., raw 

material extraction, transportation) via APIs with global supplier databases (e.g., EcoVadis, CDP). 

Develop a Scope 3 optimization module to prioritize low-carbon suppliers and reduce supply chain 

emissions. 

• Global Regulatory Compliance: Add modules for emerging carbon regulations (e.g., US Inflation 

Reduction Act, UK Emissions Trading Scheme) to support enterprises with global operations. 
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