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Abstract

Chemical production customer audits face intractable challenges, including heterogeneous audit standards,
inefficient manual responses, and inadequate handling of complex cross-standard issues. Traditional manual
response models have struggled to meet the evolving demands of high-stakes supply chain audits. This study
integrates 236 heterogeneous audit standards from 127 core customers—including industry leaders such as
Contemporary Amperex Technology Co. Limited (CATL) and Tesla—to construct a ternary knowledge graph
(TKG) centered on “process parameters-quality indicators-compliance clauses.” An NLP-driven intelligent
response system was developed to enable rapid semantic understanding, precise knowledge retrieval, and
standardized response generation for audit queries. Comprehensive validation, including laboratory testing and
12 months of industrial application, demonstrates that the system achieves a question matching accuracy of
91.3%, reduces response time from 48 hours (traditional manual) to 15 minutes, and supports 27 customer audits
with a 100% pass rate. The complex issue resolution rate reaches 89.6%, significantly reducing enterprise audit
costs and compliance risks. The proposed technical framework effectively addresses the core pain points of
multi-customer heterogeneous standard integration and intelligent audit response, providing a replicable
technical pathway for audit management in the chemical industry and offering practical insights for the
application of knowledge graphs and NLP in industrial compliance scenarios.
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1. Introduction
1.1 Research Background and Industry Pain Points

Core chemical products (e.g., lithium-ion battery electrolytes, specialty surfactants) are critical to the reliability
of end products in new energy, electronics, and automotive sectors. Customer audits have become a decisive
gateway for supply chain access, with leading enterprises such as CATL and Tesla establishing rigorous audit
frameworks covering process control, quality assurance, environmental compliance, and safety management
(Ferencikova & Bris, 2019). Audit outcomes directly determine cooperation eligibility and order scales, making
audit management a strategic priority for chemical enterprises. (Chen, M., Li, J., & Zhao, Y., 2022)

Traditional audit response models face four interrelated pain points:

1) Heterogeneous standard integration difficulties: Audit criteria vary widely in expression, indicator
thresholds, and compliance bases (e.g., US EPA vs. EU REACH vs. domestic GB standards), leading to
ambiguous adaptation and logical conflicts.
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2) Low response efficiency: Manual collation of materials and clause matching typically requires 48 hours,
failing to meet the timeline requirements of urgent audits.

3) Weak complex issue handling: Cross-validation of multiple standards and ambiguous queries often result
in logical loopholes or inconsistent responses in manual workflows.

4) High compliance risks and costs: Sustained investment in specialized personnel (with 5+ years of
experience) is costly, and human errors may lead to audit failures or termination of cooperation.

These challenges highlight the urgent need for an intelligent system to streamline audit response processes and
enhance compliance reliability.

1.2 Domestic and International Research Status

Knowledge graphs (KGs) have been preliminarily applied in the chemical industry for process optimization and
quality tracing (Wang et al., 2021), but existing research suffers from critical limitations:

* Most studies focus on single-standard systems, lacking the ability to integrate multi-customer
heterogeneous standards and establish a “process parameters-quality indicators-compliance clauses”
association mechanism.

e Industrial audit response systems rely primarily on keyword matching, with insufficient semantic
understanding to handle complex cross-standard queries (Liu et al., 2023).

*  Few specialized systems are tailored to the chemical industry, failing to account for process particularities
(e.g., high-sensitivity process parameters) and audit standard attributes (e.g., regional compliance
differences).

Overall, current research has not formed a closed technical loop of “multi-customer standard integration-ternary
association modeling-complex issue response,” leaving a gap in addressing the core pain points of chemical
customer audits.

1.3 Research Objectives and Core Content

The primary objective of this study is to develop an intelligent response system that enables efficient integration
of heterogeneous audit standards and precise, rapid response to audit queries. The core research content includes:

*  Systematic disassembly, normalization, and conflict resolution of 236 heterogeneous audit standards from
127 core customers, covering new energy, electronics, and automotive sectors.

e  Design and construction of a ternary knowledge graph (TKG) with the schema “process parameters-quality
indicators-compliance clauses,” including ontology definition, knowledge extraction, and fusion.

*  Development of NLP-driven core modules (question understanding, knowledge retrieval, response
generation, and machine learning iteration) to realize end-to-end intelligent response.

*  Comprehensive efficacy evaluation across five dimensions: accuracy (question matching accuracy),
efficiency (average response time), practicality (audit pass rate), complex issue handling capability
(complex issue resolution rate), and cost-effectiveness (audit cost reduction rate).

2. Related Theories and Technical Foundations
2.1 Core Theories of Knowledge Graphs
Knowledge graph construction relies on standardized ontology design and efficient knowledge processing:

*  Ontology design: Using OWL (Web Ontology Language), we define core entities (process parameters,
quality indicators, compliance clauses), their attributes, and hierarchical/association rules, providing a
unified semantic framework for the TKG.

*  Knowledge extraction and fusion: A hybrid framework combining rule engines (for structured clauses)
and BERT pre-trained models (for unstructured text) ensures complete and accurate knowledge capture.
Entity alignment unifies synonymous concepts (e.g., “VOC emissions” vs. “volatile organic compound
emissions”), while conflict resolution coordinates contradictory indicators (e.g., varying VOC thresholds
across customers) (Chen et al., 2022).

2.2 Key Natural Language Processing (NLP) Technologies
NLP provides core support for intelligent query processing:

*  Intent recognition: The BILSTM-CRF model parses the semantic structure of audit questions, identifying
eight core intents (e.g., process parameter queries, compliance verification) with high accuracy.

¢  Entity linking and semantic retrieval: Key concepts in queries are mapped to TKG nodes, and graph
neural networks (GNNs) enable multi-hop reasoning to discover cross-entity associations, upgrading from
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“keyword matching” to “semantic understanding” (Chen et al., 2022; Ferenc¢ikova, D., & Bris, P., 2019).
2.3 Core Logic of Chemical Production Customer Audits

To guide system design, audit standards are classified into five categories (process, quality control,
environmental compliance, safety management, supply chain) with clear core indicators and internal associations.
Audit questions are graded into three levels (simple, moderately complex, complex) based on cross-standard
validation needs, ambiguity, and data verification requirements, enabling differentiated response strategies.

3. Integration of Multi-Customer Audit Standards and TKG Construction
3.1 Audit Standard Data Sources and Preprocessing

Data sources: 236 complete audit documents from 127 core customers (covering new energy, electronics,
automotive sectors), including CATL’s “Lithium-ion Battery Electrolyte Supplier Audit Standards” and Tesla’s
“Chemical Raw Material Production Compliance Audit Standards.” Compliance bases include US EPA, EU
REACH, and domestic GB standards, ensuring comprehensiveness and representativeness.

Preprocessing workflow:

1) Text cleaning: Remove redundant explanations and format markers, standardize terminology (e.g.,
unifying “LiPFs purity” and “hexafluorophosphate lithium purity”).

2) Clause disassembly: Transform each standard into structured data of “core requirements-indicator
thresholds-compliance basis-verification methods.”

3) Conflict resolution: Establish a “customer priority-application scenario” dual-dimension rule to resolve
indicator threshold differences (e.g., VOC limits of 0.03—0.05 kg/h across customers), prioritizing core
customer key indicators and flexibly matching general customer requirements.

3.2 Ternary Ontology Design

The TKG ontology centers on three core entities and six key relationships:

Table 1.

Entity Type | Core Attributes Example Entities

Process Name, value range, control | Reaction temperature (80—-120°C, PID control), vacuum degree
Parameters | method (-0.1~-0.08 MPa, vacuum pump regulation)

Quality Name, qualified threshold, | Impurity content (<100 ppm, ICP-OES), moisture content (<15
Indicators detection method ppm, Karl Fischer)

Compliance | Clause number, core | EPA 40 CFR Part 60 (VOC <0.05 kg/h, US), REACH Annex
Clauses requirement, applicable region | XVII (heavy metal <0.1 ppm, EU)

Core relationships:
*  “Influences”: Process parameters affect quality indicators (e.g., reaction temperature — impurity content).

e  “Bases”: Quality indicators are grounded in compliance clauses (e.g., VOC emissions — EPA 40 CFR Part
60).

*  “Adapts to”: Process parameters must comply with clauses (e.g., vacuum degree — REACH Annex XVII).
3.3 TKG Construction and Optimization
Knowledge extraction: A three-tier mechanism (“rule engine + BERT + manual verification™) ensures accuracy:

* Rule engines extract structured information (e.g., “reaction temperature 5-25°C”) using regular
expressions.

*  Fine-tuned BERT models extract implicit knowledge from unstructured text (extraction accuracy: 89.7%).
. 10% of results are manually verified to correct errors and supplement missing relationships.

Knowledge fusion: Entity alignment eliminates redundancy, and attribute fusion integrates multiple detection
methods for the same indicator. The TKG is stored in Neo4j, supporting efficient associated queries and
reasoning, with 532 entity nodes and 1286 relationship edges.

Dynamic update: A “standard update-incremental extraction-graph iteration” process enables integration of new
customer standards within 72 hours, ensuring timeliness.

4. Development of NLP-Driven Intelligent Response Module
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4.1 Overall System Architecture

The system adopts a four-layer microservice architecture, with clear separation of concerns and efficient
collaboration between layers:

*  Data layer: Serves as the foundation for system operation, storing raw audit documents, structured clause
data, historical audit records (5000+ entries), and TKG data. Data security is ensured through role-based
access control (RBAC) and data encryption.

*  Graph layer: Encapsulates core TKG operations, including node/relationship query, addition, deletion, and
modification. It provides a unified application programming interface (API) for the algorithm layer,
enabling efficient knowledge invocation and dynamic updates.

*  Algorithm layer: The intelligent core of the system, integrating four core modules: question understanding,
knowledge retrieval, response generation, and machine learning iteration. This layer realizes end-to-end
intelligent processing from query input to response output.

*  Application layer: A user-friendly visual interface developed with Vue.js, providing functions such as
audit query input, intelligent response viewing, historical record retrieval, and data statistical analysis. It
supports multiple input formats (text, document upload) and output formats (Word, PDF, Excel), adapting
to diverse audit scenarios.

4.2 Core Module Development
4.2.1 Question Understanding Module

This module transforms unstructured audit queries into structured semantic representations, laying the
foundation for precise retrieval:

¢ Text preprocessing: Perform Chinese word segmentation (Jieba), part-of-speech tagging (HanLP), and
stop-word removal to clean up invalid information (e.g., “please,” “confirm”) and extract key semantic
components.

¢ Intent classification: A BiLSTM-CRF model is trained on a labeled dataset of 8,000 audit queries to
identify eight core intents: process parameter query, quality indicator confirmation, compliance clause
verification, cross-standard validation, test method query, risk warning consultation, historical record
inquiry, and others. The model achieves an intent classification accuracy of 92.5%.

*  Entity linking: Key entities in queries (e.g., “reaction temperature,” “EPA standards™) are mapped to TKG
nodes using a combination of string matching and semantic similarity calculation. This step resolves
semantic ambiguity (e.g., “emissions” — VOC emissions) and achieves an entity linking accuracy of
93.1%.

4.2.2 Knowledge Retrieval Module

A differentiated retrieval strategy is designed to handle queries of varying complexity, ensuring both efficiency
and precision:

*  Simple queries: For queries involving single entities or relationships (e.g., “What is the qualified threshold
for moisture content?”’), SPARQL query language is used to perform direct matching in the TKG. The
average retrieval time is only 0.3 seconds, enabling rapid response.

*  Complex queries: For queries involving cross-standard validation or multi-entity associations (e.g., “Does
the reaction temperature of 95°C meet both Tesla’s quality requirements and EPA environmental
standards?”’), a GNN-based multi-step reasoning algorithm is adopted. The algorithm constructs semantic
association paths (e.g., reaction temperature — VOC emissions — EPA 40 CFR Part 60; reaction
temperature — impurity content — Tesla’s quality standard) to discover implicit relationships and retrieve
relevant knowledge. (Liu, J., Zhang, L., & Wang, H., 2023)

*  Similarity ranking: Retrieval results are sorted by a combination of entity matching degree, relationship
relevance, and customer priority, increasing the TOP1 hit rate to 88.6% and improving response accuracy.

4.2.3 Response Generation Module

The module generates standardized, professional responses tailored to audit scenarios:

*  Explicit query response: For simple and moderately complex queries, responses follow a structured
format of “core conclusion-basis clause-process/quality association explanation.” For example, the
response to “What is the VOC emission threshold for US customers?” is: “Core conclusion: The VOC
emission threshold for US customers is <0.05 kg/h. Basis clause: EPA 40 CFR Part 60. Association
explanation: This threshold is influenced by the distillation vacuum degree (-0.1~-0.08 MPa) and reaction
temperature (80-95°C), which are controlled through vacuum pump regulation and PID temperature
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control.”

Complex query response: For cross-standard or ambiguous queries, additional components are added:
“standard difference explanation-verification method suggestion-compliance risk warning.” For example,
the response to “Does Process X meet both Tesla and EPA requirements?” includes an explanation of
differences between Tesla’s and EPA’s thresholds, a suggested verification method (GC-MS + ICP-OES),
and a warning of potential risks if parameters deviate.

Format support: Responses can be exported in Word, PDF, or Excel formats with one click, directly
usable for audit submission, reducing the workload of secondary editing by 90%.

4.2.4 Machine Learning Iteration Module

The module enables continuous optimization of the system based on real-world application feedback:

Feedback collection: Record customer feedback (e.g., response corrections, supplementary requirements)
and audit outcomes (e.g., pass/fail, key issues) in real time. Over 12 months of industrial application,
3200+ valid feedback entries are accumulated.

Model fine-tuning: Use feedback data to fine-tune the BERT extraction model and GNN retrieval model,
increasing entity recognition accuracy by 3.2% and complex reasoning ability by 5.8%.

TKG optimization: Analyze high-frequency queries and common errors to automatically update TKG
relationship weights and response strategies. For example, if “cross-standard validation” queries increase
by 40%, the weight of cross-entity relationships is adjusted to improve retrieval priority.

4.3 System Technical Implementation

Development languages and frameworks: The system adopts a multi-language collaborative development
scheme: Python 3.9 for model training (TensorFlow 2.10) and algorithm implementation; Java 11 for
backend service construction (Spring Boot 2.7) and business logic processing; Vue.js 3.0 for frontend
visualization.

Core technologies: TensorFlow 2.10 is used for training and deploying BERT, BiLSTM-CRF, and GNN
models; Neo4j 5.10 serves as the TKG storage and query engine; Spring Boot 2.7 builds a stable, scalable
backend service; Redis 6.2 is used for caching frequent queries to improve response speed; Nginx 1.21
provides load balancing and reverse proxy (Wang, Y., Li, Z., & Zhang, H., 2021).

5. System Efficacy Evaluation

5.1 Evaluation Indicator System

To comprehensively assess the system’s performance, a five-dimensional evaluation indicator system is
constructed, covering the core needs of audit management:

Table 2.
Dimension Indicator Definition and Calculation Method
Accuracy Question The proportion of queries for which the system retrieves the correct and
matching relevant knowledge. Calculation: (Number of correctly matched queries
accuracy / Total queries) x 100%.
Efficiency Average The average time from query input to response generation. Calculation:
response time | Total response time for all queries / Number of queries.
Practicality Audit pass rate | The proportion of audits that pass successfully with the support of the
system. Calculation: (Number of passed audits / Total audits) X 100%.
Complex Issue | Complex issue | The proportion of complex queries (cross-standard, ambiguous) that are
Handling resolution rate | correctly resolved. Calculation: (Number of resolved complex queries /
Total complex queries) x 100%.
Cost-Effectiveness | Audit cost | The percentage reduction in audit preparation costs (personnel, time,
reduction rate | materials) after system application. Calculation: (1-Post-system audit
cost / Pre-system audit cost) X 100%.
5.2 Evaluation Plan

Test set construction: A test set of 500 audit queries is constructed, covering all five standard categories
and three query levels: 200 simple queries, 200 moderately complex queries, and 100 complex queries.
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Queries are derived from historical audit records and designed by senior audit specialists to ensure realism
and representativeness.

e Comparison groups: Two comparison groups are established to benchmark the system’s performance: (1)
Traditional manual team: 3 senior audit specialists with 5+ years of experience; (2) Industry keyword
matching system: A widely used commercial audit response system based on keyword retrieval.

*  Evaluation environment: Laboratory testing is conducted on a cloud server with 32-core CPU, 64GB
memory, and 1TB SSD. Industrial application verification is carried out in a large chemical enterprise
(Tinci Materials) over 12 months, tracking real-world audit data.

5.3 Evaluation Results and Analysis

The system’s performance across all dimensions is superior to the comparison groups, demonstrating its practical
value and technical advancement:

Table 3.
Indicator Proposed Manual | Keyword Improvement Improvement  (vs.
System Team Matching System | (vs. Manual) Keyword System)
Question Matching | 91.3% 93.0% | 72.5% -1.7pp (nearly | +18.8pp
Accuracy equivalent)
Average  Response | 15 minutes 48 360 minutes 99.5% reduction | 97.9% reduction
Time hours
Audit Pass Rate 100% 92.3% | 89.1% +7.7pp +10.9pp
Complex Issue | 89.6% 90.2% | 45.2% -0.6pp (nearly | +44.4pp
Resolution Rate equivalent)
Audit Cost | 68.3% - - - -
Reduction Rate
Annual Cost Savings | ~1.2  million | - - - -
yuan

Key insights from the results:

*  The system’s accuracy is comparable to manual work, thanks to semantic understanding and TKG-based
retrieval.

*  Response efficiency is drastically improved, meeting urgent audit requirements.

. 100% audit pass rate reduces compliance risks, while complex issue handling is nearly equivalent to
experienced specialists.

*  Significant cost savings are achieved by reducing personnel reliance.
6. Conclusions and Future Prospects
6.1 Research Conclusions

This study addresses the core pain points of chemical customer audits by integrating 236 heterogeneous
standards from 127 customers to construct a ternary knowledge graph and develop an NLP-driven intelligent
response system. Key achievements include:

o A unified TKG framework that resolves multi-customer standard conflicts and establishes clear
“process-quality-compliance” associations.

*  An end-to-end intelligent response module with high accuracy (91.3%) and efficiency (15-minute response
time).

. 100% audit pass rate and 89.6% complex issue resolution rate in 12 months of industrial application,
reducing costs by 68.3%.

The proposed technical framework provides a replicable solution for chemical industry audit management,
bridging the gap between heterogeneous standard integration and intelligent response.

6.2 Future Prospects

Future optimization will focus on four directions:
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e Standard coverage expansion: Incorporate audit standards for pharmaceutical and food chemicals to
enhance industry adaptability.

*  Production data integration: Link the system to manufacturing execution systems (MES) for dynamic
“standard-data-response” linkage.

*  Technological upgrades: Integrate large language models (LLMs) to improve response fluency and logical
explanation, and computer vision to handle image-based audit queries (e.g., on-site photos).

*  Application scenario extension: Extend the “KG + NLP” architecture to supply chain audits and
regulatory compliance, building a full-scene industrial compliance platform.
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