
 

 

 
 

 

Paradigm Academic Press 
Innovation in Science and Technology 

ISSN 2788-7030 

OCT. 2022 VOL.1 NO.3 
 

 

 

8 

A Multistep Method for a Special Class of Second—Order Differential 

Equations 

 

 

S. O. Ayinde1, M. O. Oke1, R. B. Ogunrinde1, A. A. Obayomi1,  

S. N. Ogunyebi1, S. E. Fadugba1 & O.E. Abolarin2 

1 Department of Mathematics, Ekiti State University, Ado Ekiti, Ekiti State, Nigeria 

2 Mathematics Department, Federal University Oye Ekiti, Ekiti State, Nigeria 

Correspondence: S. O. Ayinde, Department of Mathematics, Ekiti State University, Ado Ekiti, Ekiti State, Nigeria. 

 

doi: 10.56397/IST.2022.10.02 

 

 

Abstract 

A multi–step numerical method for the solution of second order ordinary differential equation was developed by 

interpolating in a finite range with a basis function. The basis function consists of a combination of exponential and 

trigonometric functions to ensure that such problems possess unique and continuously differentiable solutions. The 

method has been tested and found to be reliable, efficient and less tedious than other multi-step methods which 

require reduction of higher order equations into several first order equations. The method was applied to some 

special second order equations arising from mechanics and engineering problems. The requisite numerical 

properties were obtained. 

Keywords: special higher-order equations, numerical method, basis function, linear multistep method 

1. Introduction 

A second order differential equation can be reduced into   a system of first order ODEs. Such systems have been 

solved using several analytic and numerical approaches in the past. Popular among such numerical methods are the 

predictor–corrector and other finite difference methods. These methods have been used by many scholars like 

Awoyemi and Kayode (2005), Kayode and Adeyeye (2011) and others. Recently, Block Methods become more 

widely accepted as can be found in the works of Jator (2007), Omar and Raft (2016) and Abolarin et al. (2020).  

A second order ordinary differential equation is of the form  

𝑦′′(𝑥) = 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥))                                                                    (1) 

which may be reduced to the first order system by letting 

𝑢′ = 𝑟, 𝑟′ = 𝑓(𝑥, 𝑢, 𝑟) 

where  

𝑢 = 𝑦, 𝑟 = 𝑦′. 

However, the equation (1) can be stated in the special form 

𝑦′′(𝑥) = 𝑓(𝑥, 𝑦(𝑥))                                                                             (2) 

from the special higher order equations of the form 𝑦(𝑚)(𝑥) = 𝑓(𝑥, 𝑦(𝑥)). (Frank A., & Elliot M., 2009) 

The standard special initial value problem for (2) is  

𝑦′′(𝑥) = 𝑓(𝑥, 𝑦),  𝑦(𝑎) = 𝜑 𝑎𝑛𝑑 

𝑦′(𝑎) = 𝜔                                                                              (3) 

The general solution of a first-order differential equation contains one arbitrary constant, and a single additional 
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condition called an initial condition enough to fix the value of the constant and hence determine the particular 

solution. However, the second-order differential equation contains two arbitrary constants, and two additional 

conditions as required (see (The Open University., 2013)). 

The general computational algorithm for determining the sequence {𝑦𝑛} for numerical solution at the nth point 

takes the form of a linear relationship between 𝑦𝑛+𝑗, 𝑓𝑛+𝑗, 𝑗 = 0, 1, … . 𝑘, which is referred to as linear multistep 

method of step-number k, or a linear k-step method. The general linear multistep method can then be written as 

class of difference equations 

∑ 𝛼𝑗𝑦𝑛+𝑗 = ℎ𝑘
𝑗=0 ∑ 𝛽𝑗𝑓𝑛+𝑗

𝑘
𝑗=0                                                                (4) 

Where h is a step size parameter, 𝑓0. 𝑓1, 𝑓2,… are the values of a given function 𝑓(𝑥, 𝑦) at equidistant arguments, 𝛼𝑗 

and 𝛽𝑗 are constants. We will assume that 𝛼𝑘 ≠ 0, both 𝛼0 and 𝛽0 are not zeros. (Lambert, J.D., 1972).  

For the purpose of this research, the special higher order of the form (2) shall be considered with the initial 

conditions given by (3). Such second order ordinary differential equation arises in a number of important 

applications, particularly in Mechanics and Engineering. 

2. Derivation of the Numerical Method 

Let us assume that the theoretical solution 𝑦(𝑥) to (3) can be represented in the interval [𝑥𝑛, 𝑥𝑛+1  ], 𝑛 ≥ 0 by the 

basis function, 

𝐹(𝑥) = 𝛼1𝛽𝑒𝛽𝑥 + 𝛼2𝐵𝑥 𝑙𝑜𝑔 𝐵 − 𝛼3𝑠𝑖𝑛𝑥                                                      (5) 

Where 𝛼1, 𝛼2, 𝑎𝑛𝑑 𝛼3 are real undetermined coefficients, 𝐵 𝑎𝑛𝑑 𝛽 are constants. The interval under consideration 

is 𝑥 ∈ [0,1]. The basis function (5) is the second order of the basis function which has been used as a basis function 

to develop numerical scheme by (Oguunrinde R. B. & Ayinde S O., 2017) to solve initial value problems in first 

order ordinary differential equations.  

Let 𝑦𝑛 be the numerical estimate to the theoretical solution 𝑦(𝑥) at the nth point, and can be represented by the 

function 𝑓𝑛 = 𝑓(𝑥𝑛 , 𝑦𝑛).  Define the mesh points as follows: 𝑥𝑛 = 𝑎 + 𝑛ℎ, 𝑥𝑛+1 = 𝑎 + (𝑛 + 1)ℎ, 𝑛 = 0, 1, 2, … 

Impose some constraints on the interpolating function (5) in order to get the undetermined coefficients. 

Let the interpolating function coincide with the theoretical solution at  𝑥 = 𝑥𝑛 𝑎𝑛𝑑 𝑥 = 𝑥𝑛+1. This required that 

𝐹(𝑥𝑛) = 𝛼1𝛽𝑒𝛽𝑥𝑛 + 𝛼2𝐵𝑥𝑛 𝑙𝑜𝑔 𝐵 − 𝛼3𝑠𝑖𝑛𝑥𝑛                                                  (6) 

and 

𝐹(𝑥𝑛+1) = 𝛼1𝛽𝑒𝛽𝑥𝑛+1 + 𝛼2𝐵𝑥𝑛+1 𝑙𝑜𝑔 𝐵 − 𝛼3𝑠𝑖𝑛𝑥𝑛+1                                          (7) 

and the derivatives of the basis function coincide with the differential equation as well as its first, second, and third 

derivatives with respect to 𝑥  𝑎𝑡 𝑥 = 𝑥𝑛 . 

Denote the i-th total derivatives of 𝑓(𝑥, 𝑦) with respect to 𝑥  with 𝑓  𝑖 such that  

𝐹′(𝑥𝑛) = 𝑓𝑛, 𝐹′′(𝑥𝑛) = 𝑓𝑛
1, 

𝐹′′′(𝑥𝑛) = 𝑓𝑛
2                                                                             (8) 

This implies that,  

𝑓𝑛 = 𝛼1𝛽2𝑒𝛽𝑥𝑛 + 𝛼2𝐵𝑥𝑛(𝑙𝑜𝑔 𝐵)2 − 𝛼3𝑐𝑜𝑠𝑥𝑛                                                         (9) 

𝑓𝑛
1 = 𝛼1𝛽3𝑒𝛽𝑥𝑛 + 𝛼2𝐵𝑥𝑛(𝑙𝑜𝑔 𝐵)3 + 𝛼3𝑠𝑖𝑛𝑥𝑛                                                       (10) 

𝑓𝑛
2 = 𝛼1𝛽4𝑒𝛽𝑥𝑛 + 𝛼2𝐵𝑥𝑛(𝑙𝑜𝑔 𝐵)4 + 𝛼3𝑐𝑜𝑠𝑥𝑛                                                              (11) 

Solving for 𝛼1, 𝛼2, 𝑎𝑛𝑑 𝛼3 from the system of equation (9) to (11), we have 

(

𝛽2𝑒𝛽𝑥𝑛 𝐵𝑥𝑛(𝑙𝑜𝑔𝐵)2 −𝑐𝑜𝑠𝑥𝑛

𝛽3𝑒𝛽𝑥𝑛 𝐵𝑥𝑛(𝑙𝑜𝑔𝐵)3 𝑠𝑖𝑛𝑥𝑛

𝛽4𝑒𝛽𝑥𝑛 𝐵𝑥𝑛(𝑙𝑜𝑔𝐵)4 𝑐𝑜𝑠𝑥𝑛

) (

𝛼1

𝛼2

𝛼3

) = (

𝑓𝑛

𝑓𝑛
1

𝑓𝑛
2

)                                                (12) 

Taking this as system of equations,  𝐴𝑋 = 𝐵,  it gives 

𝛼1 =

[𝑓𝑛(𝑙𝑜𝑔 𝐵)3−𝑓𝑛
1(𝑙𝑜𝑔𝐵)2−𝑓𝑛

1(𝑙𝑜𝑔𝐵)4+𝑓𝑛
2(𝑙𝑜𝑔𝐵)3]𝑐𝑜𝑠𝑥𝑛

+[𝑓𝑛
2(𝑙𝑜𝑔𝐵)2−𝑓𝑛(𝑙𝑜𝑔 𝐵)4]𝑠𝑖𝑛𝑥𝑛

𝑒𝛽𝑥𝑛[(𝛽2(𝑙𝑜𝑔𝐵)3−𝛽3(𝑙𝑜𝑔𝐵)2−𝛽3(𝑙𝑜𝑔𝐵)4+𝛽4(𝑙𝑜𝑔𝐵)3)𝑐𝑜𝑠𝑥𝑛

+(𝛽4(𝑙𝑜𝑔𝐵)2−𝛽2(𝑙𝑜𝑔𝐵)4)𝑠𝑖𝑛𝑥𝑛]

                                             (13) 

𝛼2 =
𝛽2(𝑓𝑛

1𝑐𝑜𝑠𝑥𝑛−𝑓𝑛
2𝑠𝑖𝑛𝑥𝑛)−𝛽3𝑐𝑜𝑠𝑥𝑛(𝑓𝑛+𝑓𝑛

2)+𝛽4(𝑓𝑛𝑠𝑖𝑛𝑥𝑛+𝑓𝑛
1𝑐𝑜𝑠𝑥𝑛)

𝐵𝑥𝑛[(𝛽2(𝑙𝑜𝑔𝐵)3−𝛽3(𝑙𝑜𝑔𝐵)2−𝛽3(𝑙𝑜𝑔𝐵)4+𝛽4(𝑙𝑜𝑔𝐵)3)𝑐𝑜𝑠𝑥𝑛

+(𝛽4(𝑙𝑜𝑔𝐵)2−𝛽2(𝑙𝑜𝑔𝐵)4)𝑠𝑖𝑛𝑥𝑛]

                                      (14) 
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𝛼3 =

𝑓𝑛(𝛽3(𝑙𝑜𝑔𝐵)4−𝛽4(𝑙𝑜𝑔𝐵)3)−𝑓𝑛
1(𝛽4(𝑙𝑜𝑔𝐵)2−𝛽2(𝑙𝑜𝑔𝐵)4)

+𝑓𝑛
2 (𝛽2(𝑙𝑜𝑔𝐵)3−𝛽3(𝑙𝑜𝑔𝐵)2)

[(𝛽2(𝑙𝑜𝑔𝐵)3−𝛽3(𝑙𝑜𝑔𝐵)2−𝛽3(𝑙𝑜𝑔𝐵)4+𝛽4(𝑙𝑜𝑔𝐵)3)𝑐𝑜𝑠𝑥𝑛

+(𝛽4(𝑙𝑜𝑔𝐵)2−𝛽2(𝑙𝑜𝑔𝐵)4)𝑠𝑖𝑛𝑥𝑛]

                                                 (15) 

Since 𝐹(𝑥𝑛+1) = 𝑦(𝑥𝑛+1) and 𝐹(𝑥𝑛) = 𝑦(𝑥𝑛) 

Implies that 𝑦(𝑥𝑛+1) = 𝑦𝑛+1 and 𝑦(𝑥𝑛) = 𝑦𝑛, therefore, 

𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛) = 𝑦𝑛+1 − 𝑦𝑛                                                            (16) 

Therefore,  

𝑦𝑛+1 − 𝑦𝑛 = 𝛼1𝛽[𝑒𝛽𝑥𝑛+1 − 𝑒𝛽𝑥𝑛] + 𝛼2𝑙𝑜𝑔𝐵[𝐵𝑥𝑛+1 − 𝐵𝑥𝑛] 

+𝛼3[𝑠𝑖𝑛𝑥𝑛 − 𝑠𝑖𝑛𝑥𝑛+1]                                              (17) 

Recall that 𝑥𝑛 = 𝑎 + 𝑛ℎ,  𝑥𝑛+1 = 𝑎 + (𝑛 + 1)ℎ with 𝑛 = 0,1,2 … by expansion of (17) 

𝑦𝑛+1 − 𝑦𝑛 = 𝛼1𝛽𝑒𝛽𝑥𝑛(𝑒𝛽ℎ − 1) + 𝛼2𝐵𝑥𝑛(𝐵ℎ − 1)𝑙𝑜𝑔𝐵 +𝛼3(𝑠𝑖𝑛𝑥𝑛 − sin (𝑥𝑛 + ℎ))                (18) 

𝐿𝑒𝑡  

𝑀 = 𝛼1𝛽𝑒𝛽𝑥𝑛(𝑒𝛽ℎ − 1) 

𝐿 = 𝛼2𝐵𝑥𝑛(𝐵ℎ − 1)𝑙𝑜𝑔𝐵 

𝑁 = 𝛼3(𝑠𝑖𝑛𝑥𝑛 − sin (𝑥𝑛 + ℎ)) 

Substituting for 𝛼1, 𝛼2, and 𝛼3 from (13, 14, 15) into (18), gives,  

𝑦𝑛+1 = 𝑦𝑛 + 𝑀 + 𝐿 + 𝑁                                                                  (19) 

where 

𝑀 = 𝛽(𝑒𝛽ℎ − 1) 

[𝑓𝑛(𝑙𝑜𝑔 𝐵)3 − 𝑓𝑛
1(𝑙𝑜𝑔𝐵)2 − 𝑓𝑛

1(𝑙𝑜𝑔𝐵)4 + 𝑓𝑛
2(𝑙𝑜𝑔𝐵)3]𝑐𝑜𝑠𝑥𝑛

+[𝑓𝑛
2(𝑙𝑜𝑔𝐵)2 − 𝑓𝑛(𝑙𝑜𝑔 𝐵)4]𝑠𝑖𝑛𝑥𝑛

[(𝛽2(𝑙𝑜𝑔𝐵)3 − 𝛽3(𝑙𝑜𝑔𝐵)2 − 𝛽3(𝑙𝑜𝑔𝐵)4 + 𝛽4(𝑙𝑜𝑔𝐵)3)𝑐𝑜𝑠𝑥𝑛

+(𝛽4(𝑙𝑜𝑔𝐵)2 − 𝛽2(𝑙𝑜𝑔𝐵)4)𝑠𝑖𝑛𝑥𝑛]

 

𝐿 = (𝐵ℎ − 1)𝑙𝑜𝑔𝐵

𝛽2(𝑓𝑛
1𝑐𝑜𝑠𝑥𝑛 − 𝑓𝑛

2𝑠𝑖𝑛𝑥𝑛) − 𝛽3𝑐𝑜𝑠𝑥𝑛(𝑓𝑛+𝑓𝑛
2)

+𝛽4(𝑓𝑛𝑠𝑖𝑛𝑥𝑛 + 𝑓𝑛
1𝑐𝑜𝑠𝑥𝑛)]

𝐵𝑥𝑛[(𝛽2(𝑙𝑜𝑔𝐵)3 − 𝛽3(𝑙𝑜𝑔𝐵)2 − 𝛽3(𝑙𝑜𝑔𝐵)4 + 𝛽4(𝑙𝑜𝑔𝐵)3)𝑐𝑜𝑠𝑥𝑛

+(𝛽4(𝑙𝑜𝑔𝐵)2 − 𝛽2(𝑙𝑜𝑔𝐵)4)𝑠𝑖𝑛𝑥𝑛]

 

𝑁 = (𝑠𝑖𝑛𝑥𝑛 − sin(𝑥𝑛 + ℎ)) X 

𝑓𝑛(𝛽3(𝑙𝑜𝑔𝐵)4−𝛽4(𝑙𝑜𝑔𝐵)3)−𝑓𝑛
1(𝛽4(𝑙𝑜𝑔𝐵)2−𝛽2(𝑙𝑜𝑔𝐵)4)+𝑓𝑛

2 (𝛽2(𝑙𝑜𝑔𝐵)3−𝛽3(𝑙𝑜𝑔𝐵)2)

[(𝛽2(𝑙𝑜𝑔𝐵)3−𝛽3(𝑙𝑜𝑔𝐵)2−𝛽3(𝑙𝑜𝑔𝐵)4+𝛽4(𝑙𝑜𝑔𝐵)3)𝑐𝑜𝑠𝑥𝑛

+(𝛽4(𝑙𝑜𝑔𝐵)2−𝛽2(𝑙𝑜𝑔𝐵)4)𝑠𝑖𝑛𝑥𝑛]

                     (19) 

Equation (19) is the numerical method derived for the solution of second - order differential equations. 

3. Analysis of the Properties of the Numerical Method 

Consider the derived numerical method (19) in form of multi-step method, we shall establish the numerical 

algorithm which can be expressed in the form  

𝑦𝑛+1 = 𝑦𝑛 +  ℎ∅(𝑥𝑛, 𝑦𝑛; ℎ)                                                          (20) 

Where ∅(𝑥𝑛 , 𝑦𝑛; ℎ) is the increment function. 

Expanding 𝑒𝛽ℎ  and 𝐵ℎ in Taylor’s series (to the fifth term), also the Taylor’s series of hyperbolic function of 

𝑐𝑜𝑠ℎ (to the fourth terms), i.e. 

𝑒𝛽ℎ = ∑
(𝛽ℎ)

𝑟!

𝑟
∞
𝑟=0                                                                        (21) 

𝐵ℎ = ∑ ℎ𝑟(𝑙𝑜𝑔𝐵)𝑟∞
𝑟=0                                                               (22) 

Also 𝑐𝑜𝑠 ℎ and 𝑠𝑖𝑛 ℎ  gives, 

𝑐𝑜𝑠 ℎ = ∑
ℎ2𝑟

(2𝑟)!

∞
𝑟=0                                                                       (23) 

𝑆𝑖𝑛 ℎ = ∑
ℎ(2𝑟+1)

(2𝑟+1)!

∞
𝑟=0                                                                    (24) 

substitute (21, 22, 23,24) into (19) and expand, 

Let 𝑓𝑛 = 𝑓𝑛, 𝑓𝑛
1 = 𝑓𝑛1 and 𝑓𝑛

2 = 𝑓𝑛2, therefore, we have 

𝑦𝑛+1 = 𝑦𝑛 + ℎ{𝐴𝑓𝑛 + 𝐵𝑓𝑛
1 + 𝐶𝑓𝑛

2}                                                   (25) 
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Where 

𝐴 = [
ℎ

2
𝛽3𝑙𝑜𝑔𝐵3 +

ℎ2

3
𝛽4𝑙𝑜𝑔𝐵3 +

ℎ3

24
𝛽5𝑙𝑜𝑔𝐵3 − ℎ𝛽3𝑙𝑜𝑔𝐵3 − ℎ2𝛽3𝑙𝑜𝑔𝐵4 − ℎ𝛽3𝑙𝑜𝑔𝐵5 − 𝛽3𝑙𝑜𝑔𝐵4 −

ℎ2

6
𝛽3𝑙𝑜𝑔𝐵4 −

ℎ4

120
𝛽3𝑙𝑜𝑔𝐵4 −

ℎ6

5040
𝛽3𝑙𝑜𝑔𝐵4 + 𝛽4𝑙𝑜𝑔𝐵3 +

ℎ4

120
𝛽4𝑙𝑜𝑔𝐵3 +

ℎ6

5040
𝛽4𝑙𝑜𝑔𝐵3] 𝑐𝑜𝑠𝑥𝑛 +

[−𝛽2𝑙𝑜𝑔𝐵4 −
ℎ2

6
𝛽4𝑙𝑜𝑔𝐵4 −

ℎ3

24
𝛽5𝑙𝑜𝑔𝐵4 + 𝛽4𝑙𝑜𝑔𝐵2 + ℎ𝛽4𝑙𝑜𝑔𝐵3 + ℎ2𝛽4𝑙𝑜𝑔𝐵4 + ℎ𝛽4𝑙𝑜𝑔𝐵5 +

ℎ3

24
𝛽3𝑙𝑜𝑔𝐵4 +

ℎ5

720
𝛽3𝑙𝑜𝑔𝐵4 −

ℎ

2
𝛽4𝑙𝑜𝑔𝐵3 −

ℎ3

24
𝛽4𝑙𝑜𝑔𝐵3 −

ℎ5

720
𝛽4𝑙𝑜𝑔𝐵3] 𝑠𝑖𝑛𝑥𝑛  

𝐵 = [−
ℎ

2
𝛽3𝑙𝑜𝑔𝐵2 −

ℎ

2
𝛽3𝑙𝑜𝑔𝐵4 −

ℎ2

6
𝛽4𝑙𝑜𝑔𝐵2 −

ℎ2

6
𝛽4𝑙𝑜𝑔𝐵4 −

ℎ3

24
𝛽5𝑙𝑜𝑔𝐵2 −

ℎ3

24
𝛽5𝑙𝑜𝑔𝐵4 + ℎ𝛽2𝑙𝑜𝑔𝐵3 +

ℎ𝛽4𝑙𝑜𝑔𝐵3 + ℎ𝛽2𝑙𝑜𝑔𝐵5 + ℎ𝛽4𝑙𝑜𝑔𝐵5 + ℎ2𝛽2𝑙𝑜𝑔𝐵4 + ℎ2𝛽4𝑙𝑜𝑔𝐵4 +
ℎ2

6
𝛽2𝑙𝑜𝑔𝐵4 +

ℎ4

120
𝛽2𝑙𝑜𝑔𝐵4 +

ℎ6

5040
𝛽2𝑙𝑜𝑔𝐵4 +

ℎ4

120
𝛽4𝑙𝑜𝑔𝐵2 +

ℎ6

5040
𝛽4𝑙𝑜𝑔𝐵2] 𝑐𝑜𝑠𝑥𝑛 + [−

ℎ

2
𝛽2𝑙𝑜𝑔𝐵4 −

ℎ

2
𝛽4𝑙𝑜𝑔𝐵2 −

ℎ3

24
𝛽2𝑙𝑜𝑔𝐵4 −

ℎ3

24
𝛽4𝑙𝑜𝑔𝐵2 −

ℎ5

720
𝛽2𝑙𝑜𝑔𝐵4 −

ℎ5

720
𝛽4𝑙𝑜𝑔𝐵2] 𝑠𝑖𝑛𝑥𝑛  

𝐶 = [−ℎ𝛽3𝑙𝑜𝑔𝐵3 − ℎ𝛽3𝑙𝑜𝑔𝐵5 − ℎ2𝛽3𝑙𝑜𝑔𝐵4 +
ℎ

2
𝛽3𝑙𝑜𝑔𝐵3 +

ℎ2

6
𝛽4𝑙𝑜𝑔𝐵3 +

ℎ2

6
𝛽2𝑙𝑜𝑔𝐵3 +

ℎ2

6
𝛽3𝑙𝑜𝑔𝐵2

+
ℎ3

24
𝛽5𝑙𝑜𝑔𝐵3 −

ℎ4

120
𝛽4𝑙𝑜𝑔𝐵3 +

ℎ4

120
𝛽3𝑙𝑜𝑔𝐵2 −

ℎ6

5040
𝛽2𝑙𝑜𝑔𝐵3 +

ℎ6

5040
𝛽3𝑙𝑜𝑔𝐵2] 𝑐𝑜𝑠𝑥𝑛

+ [−ℎ𝛽2𝑙𝑜𝑔𝐵3 − ℎ𝛽2𝑙𝑜𝑔𝐵5 − ℎ2𝛽4𝑙𝑜𝑔𝐵4 +
ℎ

2
𝛽2𝑙𝑜𝑔𝐵3 +

ℎ2

6
𝛽4𝑙𝑜𝑔𝐵2 +

ℎ3

24
𝛽5𝑙𝑜𝑔𝐵2

+
ℎ3

24
𝛽2𝑙𝑜𝑔𝐵3 −

ℎ3

24
𝛽3𝑙𝑜𝑔𝐵2 +

ℎ5

720
𝛽2𝑙𝑜𝑔𝐵3 −

ℎ5

720
𝛽3𝑙𝑜𝑔𝐵2] 𝑠𝑖𝑛𝑥𝑛 

Therefore, (25) is the increment function of (19). 

3.1 Consistency of the Numerical Method  

According to (Dahlquist G., 1956), second order ordinary differential equations of the form (3) which is an 𝑚 – 

step linear Multistep Method that needs 𝑚 − 1 additional starting values. Consider a class of difference equations 

(4) of the form 

∑ 𝛼𝑖𝑦𝑛+𝑖 = ℎ

𝑘

𝑖=0

∑ 𝛽𝑖𝑓𝑛+𝑖

𝑘

𝑖=0

 

where ℎ is a parameter and 𝑓0, 𝑓1, 𝑓2, … are values of a given function 𝑓(𝑥, 𝑦) at equidistant arguments 𝑥𝑛 = 𝑎 +
𝑛ℎ. i.e 𝑓𝑛(𝑥𝑛 , 𝑦𝑛). The initial value problem for an ordinary differential equations 𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑎) = 𝑦0 has 

some particular formulas of the form  

𝑦𝑛+1 − 𝑦𝑛 = ℎ𝑓𝑛                                                                      (26) 

However, as 𝑦𝑛  tends to the solution 𝑦(𝑥) when ℎ → 0 and 𝑛 → ∞, so  𝑥𝑛 = 𝑎 + 𝑛ℎ provided that 𝑓(𝑥, 𝑦) is 

continuous and satisfies a Lipschitz condition. Two formulas that can be utilized are 

𝑦𝑛+1 − 𝑦𝑛 =
1

2
ℎ(𝑓𝑛+1 + 𝑓𝑛)                                                          (27) 

𝑦𝑛+2 − 𝑦𝑛 =
1

3
ℎ(𝑓𝑛+2 + 4𝑓𝑛+1 + 𝑓𝑛                                                    (28) 

Equation (27) is based on quadratic formula known as Trapezoidal rule and (28) is based on Simpson’s rule. In 

order that the difference equation (4) should be useful for Numerical method, it is necessary that it satisfied with 

good accuracy by the solution of 𝑦′′(𝑥) = 𝑓(𝑥, 𝑦),  𝑦(𝑎) = 𝜑 𝑎𝑛𝑑 𝑦′(𝑎) = 𝜔 , when ℎ is small, for an arbitrary 

function 𝑓(𝑥, 𝑦). It follows from this that the value of the expression 𝐿[𝑦(𝑥)] defined by  

𝐿[𝑦(𝑥)] = ∑ [𝛼𝑖𝑦(𝑥 + 𝑖ℎ) − ℎ𝑘
𝑖=0 𝛽𝑖𝑦′(𝑥 + 𝑖ℎ)]                                          (29) 

should be small when ℎ is small, for all sufficiently regular function 𝑦(𝑥). This imposes restrictions on the 

coefficients 𝛼𝑖, 𝛽𝑖 in (4). By expanding the terms in (29) into powers of ℎ we see that  

𝐿[𝑦(𝑥)] = ∑ 𝐶𝑞ℎ𝑞𝑦𝑞𝑟+1
𝑞=0 + 𝑂(ℎ𝑟+2)                                                   (30)  

Where  

𝐶𝑞 = {
∑ 𝛼𝑖

𝑘
𝑖=0                                   𝑖𝑓𝑞 = 0

∑
(−𝑖)𝑞

𝑞!

𝑘
𝑖=0 𝛼𝑖 +

(−𝑖)𝑞−1

(𝑞−1)!
𝛽𝑖  𝑖𝑓 𝑞 > 0

                                                   (31) 

for arbitrary 𝑦(𝑥) if and only if the following 𝑝 + 1 linear which have order 𝑝 and can be written as  

𝜌(𝑒ℎ) − ℎ𝜎(𝑒ℎ) = 𝑂(ℎ𝑝+1)      𝑎𝑠 ℎ → 0                                                 (32) 
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Since a numerical method is consistent if it has order at least one, which is the case if 𝜌(1) = 0 and 𝜌′(1) = 𝜎(1).  
The numerical method (25) is of order 𝑝, 𝑝 > 0. Hence it is consistent. 

3.2 Zero Stability of the Numerical Method  

Definition 1 (Jain, M.K., Iyengar, S.R.K. & Jain, R.K., 2012) 

The Multistep Method (4) is said to be zero stable if all solutions of the homogeneous linear difference equation  

∑ 𝛼𝑖𝑦𝑛+𝑖 = 0𝑘
𝑖=0                                                                               (33)  

are bounded for all 𝑛. 

Consider the linear difference equation 

∑ 𝛼𝑖𝑦𝑛+𝑖 = ∅𝑛  , 𝑛 = 𝑛0
𝑘
𝑖=0                                                                       (34)  

where 𝛼0, 𝛼1, … , 𝛼𝑘  are constants independent of 𝑛, 𝛼0 ≠ 0, 𝛼𝑘 ≠ 0 and {∅𝑛}, 𝑛 = 𝑛0 is a known sequence. A 

solution of this difference equation is a sequence of values {𝑦𝑛},  𝑛 = 𝑛0 that satisfies (34) identically for all , 𝑛 =
𝑛0. The general solution to (4) in the from (19) can be written as  

𝑦𝑛 = �̂�𝑛 + 𝜑𝑛                                                                                  (35) 

where �̂�𝑛 is the general solution of the associated homogeneous equation (33) and 𝜑𝑛 is a particular solution of 

(34). To determine �̂�𝑛, use  

�̂�𝑛 = 𝑟𝑛                                                                                    (36) 

substituting (36) into (33) yields 

∑ 𝛼𝑖𝑟
𝑛−𝑖 = 0𝑘

𝑖=0  , dividing by 𝑟𝑛−𝑘 yields 

𝜌(𝑟) = ∑ 𝛼𝑖𝑟
𝑛−𝑖 = 0𝑘

𝑖=0                                                                          (37) 

hence, the 𝑘 roots of 𝜌(𝑟) is 𝑟1, 𝑟2, … , 𝑟𝑘 . 

In general, the multistep method (4) is zero stable for the initial value problem of second order (1) for sufficiently 

small h if there exists some constant 𝑚 independent of ℎ such that  

|𝑦𝑛 − �̂�𝑛| ≤ 𝑀 max
0≤𝑖≤𝑚−1

|𝑦𝑛 − �̂�𝑛| 

for all 𝑛 with 𝑥0 ≤ 𝑥𝑘 ≤ 𝑥𝑛. More plainly, a method is zero stable for a particular problem if errors in the starting 

values are not magnified in an unbounded fashion, this is shown in the test equation below. 

Theorem 1 (Lambert, J.D., 1972) 

A linear multistep method is zero stable for any initial value problem of second order provided it satisfies the root 

condition 

(i) all roots 𝜌(𝑟) = 0 lie in the unit disk. i.e |𝑟| ≤ 1  

(ii) any roots in the unit circle (|𝑟| ≤ 1) are simple. 

3.3 Convergence of the Numerical Method  

Definition 2 (Lambert, J.D., 1972) 

The linear multistep method ∑ 𝛼𝑗𝑦𝑛+𝑗 = ℎ𝑘
𝑗=0 ∑ 𝛽𝑗𝑓𝑛+𝑗

𝑘
𝑗=0  where 𝛼𝑗 and 𝛽𝑗 are constants, assume that 𝛼𝑘 ≠ 0 and 

that not both 𝛼0 and 𝛽0 are zero, is said to be Convergent if for  all initial value problem 𝑦(𝑎) = 𝜑 𝑎𝑛𝑑 𝑦′(𝑎) = 𝜔, 

subject to the hypothesis of Lipschitz condition,  we have lim
ℎ→0

𝑦𝑛 = 𝑦(𝑥𝑛) holds for all 𝑥 ∈ [𝑎, 𝑏], and all solutions 

{𝑦𝑛}  of the difference equation 𝑦′′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)) , satisfying the conditions 𝑦𝜏 = 𝜑𝜏(ℎ)  for which 

lim
ℎ→0

𝜑𝜏(ℎ) = 𝜑, 𝜏 = 0,1,2, … 𝑘 − 1 

Theorem 2 (Dahlquist Equivalence Theorem) 

Suppose an 𝑚 – step multistep method (19) applied to an initial value problem on [𝑥0, 𝑥𝑛] with constant starting 

values 𝑦𝑛 − 𝑦(𝑥𝑛) for 𝑥𝑛 = 𝑥0 + 𝑛ℎ , 𝑛 = 0, 1, … , 𝑚 − 1 as ℎ → 0. This method is convergent i.e 𝑦(𝑥𝑛) → 𝑦(𝑥) 

for all 𝑥 ∈ [𝑥0, 𝑥𝑛] as ℎ → 0 if and only if the method is consistent and zero stable. Since the exact solution is 

sufficiently smooth, 𝑦(𝑥) ∈ 𝐶𝑝+1(𝑥0, 𝑥𝑛) and the multistep method is order 𝑝, then 

𝑦(𝑥𝑘) − 𝑦𝑘 = 𝑂(ℎ𝑝)                                                                            (38)  

for all 𝑥𝑘 ∈ [𝑥0, 𝑥𝑛] as it satisfy the following theorem. 

Theorem 3 (Fatunla, S.O., 1988) 

Let the increment function 𝑦𝑛+1 = 𝑦𝑛 + ℎ{𝐴𝑓𝑛 + 𝐵𝑓𝑛
1 + 𝐶𝑓𝑛

2} as drawn in (32) be continuous in each of its 

arguments for (𝑥, 𝑦) ∈ 𝑅𝑚+1 and 0 < ℎ ≤ ℎ0, and, in addition, let ∅ satisfy a Lipschitz condition of order one 

with respect to y. Then  𝑦𝑛+1 = 𝑦𝑛 + ℎ∅(𝑥𝑛 , 𝑦𝑛; ℎ) is convergent if and only if it is consistent and stable.  



INNOVATION IN SCIENCE AND TECHNOLOGY                                                                                                              OCT. 2022 VOL.1 NO.3 

13 

3.4 Stability Analysis of the Numerical Method  

Definition 3 (Fatunla, S.O., 1988) 

The Linear Multistep Method is said to be absolutely stable for a given 𝑧  if  |𝜆𝑟| ≤ 1,    𝑟 = 1(1)𝑘,  and the 

region of absolute stability (RAS) is the set  

𝑙 = {𝑧 ∈ 𝐶: |𝜆𝑟| ≤ 1, 𝑟 = 1(1)𝑘 

Consider the increment function (25) to the numerical method (19) of the form  

𝑦𝑛+1 = 𝑦𝑛 + ℎ{𝐴𝑓𝑛 + 𝐵𝑓𝑛
1 + 𝐶𝑓𝑛

2} 

Subjected to expansion in ℎ, grouping and collecting the like terms gives  

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓𝑛 +
1

2
ℎ2𝑓𝑛

1 +
1

6
ℎ3𝑓𝑛

2                                                               (39) 

According to (Awoyemi, D. O., & Kayode, S. J., 2005), the stability characteristics of the Multistep Method 

equation  

𝜌(𝐸)𝑦𝑛 = ℎ2𝜎(𝐸)𝑓𝑛                                                                                 (40) 

is normally investigated by its application to the scalar test equation 

𝑦𝑛
′′ = 𝜆2𝑦𝑛                                                                                         (41) 

whose resultant finite equation has the characteristic equation 

𝜋(𝑧, 𝑅) = 𝜌(𝑅) − 𝑧2𝜌(𝑅), 𝑧 = 𝑖𝜆ℎ                                                                    (42) 

= ∑ 𝑄𝑖(𝑧2)𝑅𝑘−𝑖

𝑛

𝑖=0

 

Where 𝑄𝑖(𝑧2) are polynomials in 𝑧2. 

Hence, using the test equation,  

𝑦𝑛
′′ = 𝜆2𝑦𝑛 = 𝑓𝑛, 𝑦𝑛

′′′ = 𝜆3𝑦𝑛 = 𝑓𝑛
1, 𝑦𝑛

𝑖𝑣 = 𝜆4𝑦𝑛 = 𝑓𝑛
2                                                (43) 

Substituting (41) into (39), and expand gives 

𝑦𝑛+1 = 𝑦𝑛 +
1

2
ℎ2𝜆2𝑦𝑛 +

1

6
ℎ3𝜆3𝑦𝑛 +

1

24
ℎ4𝜆4𝑦𝑛                                                   (44) 

𝑦𝑛+1

𝑦𝑛
= 1 +

1

2
ℎ2𝜆2 +

1

6
ℎ3𝜆3 +

1

24
ℎ4𝜆4                                                            (45) 

If 𝑧 = 𝜆ℎ and 
𝑦𝑛+1

𝑦𝑛
=  𝜇(𝑧), (45) becomes 

𝜇(𝑧) = 1 +
1

2
𝑧2 +

1

6
𝑧3 +

1

24
𝑧4                                                                   (46) 

which is the stability function of the method (19) 

Definition 4 (Fatunla, S.O., 1988) 

The Linear Multiple Method equation (39) is said to be P-stable if its interval of periodicity is (0, ∞). 

Therefore the region of absolute stability of the method (19) is verified using (46) as −4.0 < 𝑢 < 0.5 and −4.0 <
𝑣 < 4.0 in the region 0 ≤ 𝜃 < 2 ∗ 𝑝𝑖. The method is absolutely stable at the shaded points as seen in the graph 

below. 

 

 

 

Figure 1. The shaded portion showing the Region of Absolute Stability for the Numerical Method (19) 

 

4. The Implementation and Results of the Numerical Method 

Problem 1: Using Numerical Method (19) to solve the initial value problem  

𝐼𝑚(𝜆2ℎ) 

𝑅𝑒(𝜆2ℎ) 
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𝑦′′ + 9 = 𝑥 + 2, 𝑦(0) = −1,  𝑦′(0) = 1 , which is non – autonomous , 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 0 ≤ 𝑥 ≤ 1 , The 

analytical solution, 𝑦(𝑥) =
1

6
𝑥3 −

7

2
𝑥2 + 𝑥 − 1 

 

Table 1. Results of problem 1, for ℎ = 0.025 

Xn Numerical 

Solution 

Exact 

Solution 

Absolute 

Error 

0.000 -1.0000000000 -1.0000000000 0.0000000000 

0.025 -0.9771642416 -0.9771848958 0.0000206543 

0.125 -0.9265794390 -0.9293619792 0.0027825401 

0.250 -0.9649405317 -0.9661458333 0.0012053017 

0.375 -1.1057111778 -1.1083984375 0.0026872597 

0.500 -1.3494974679 -1.3541666667 0.0046691987 

0.625 -1.6943573540 -1.7014973958 0.0071400418 

0.750 -2.1382909469 -2.1484375000 0.0101465531 

0.875 -2.6792086005 -2.6930338542 0.0138252536 

1.000 -3.3148564212 -3.3333333333 0.0184769122 

 

 

Figure 2. The graph of the solutions to problem 1 on table 1 

 

 

Figure 3. The graph of the absolute error to problem 1 on table 1 
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Problem 2: Using Numerical Method (19) to solve the initial value problem 

𝑦′′ + 𝑦 = 0, 𝑦(0) = 3,  𝑦′(0) = 2, 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 0 ≤ 𝑥 ≤ 1, which is autonomous. The analytical solution 

𝑦(𝑥) = 2𝑠𝑖𝑛𝑥 + 3𝑐𝑜𝑠𝑥.  

 

Table 2. Results of problem 2, for ℎ = 0.01 

Xn Numerical 

Solution 

Exact 

Solution 

Absolute 

Error 

0.00 3.0000000000 3.0000000000 0.0000000000 

0.10 3.1936534241 3.1846793291 0.0089740950 

0.20 3.3546994080 3.3375383951 0.0171610129 

0.30 3.4816171838 3.4570498807 0.0245673031 

0.40 3.5732493919 3.5420196666 0.0312297253 

0.50 3.6288267538 3.5915987629 0.0372279909 

0.60 3.6479997630 3.6052917915 0.0427079715 

0.70 3.6308906775 3.5829619363 0.0479287412 

0.80 3.5782041636 3.5248323098 0.0533718538 

0.90 3.4915338817 3.4314837241 0.0600501576 

1.00 3.3745722863 3.3038488872 0.0707233990 

 

 

Figure 4. The graph of the solutions to problem 2 on table 2 

 

 

Figure 5. The graph of the absolute error to problem 2 
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Problem 3: Using Numerical Method (19) to solve the initial value problem  

𝑦′′ + 𝑦 = 𝑠𝑖𝑛𝑥, 𝑦(0) = 1,  𝑦′(0) = 3, 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 0 ≤ 𝑥 ≤ 1The analytical solution is obtained as 𝑦(𝑥) =
7

2
𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 −

𝑥

2
𝑐𝑜𝑠𝑥 

 

Table 3. Results of problem 3, for ℎ = 0.01 

Xn Numerical 

Solution 

Exact 

Solution 

Absolute 

Error 

0.00 1.0000000000 1.0000000000 0.0000000000 

0.10 1.3029926711 1.2946709154 0.0083217557 

0.20 1.5704419739 1.5693821766 0.0010597973 

0.30 1.8497036135 1.8463567391 0.0033468744 

0.40 2.1049603428 2.0998129933 0.0051473495 

0.50 2.3436635731 2.3361763065 0.0074872666 

0.60 2.5647387611 2.5539835873 0.0107551737 

0.70 2.7684597943 2.7519093271 0.0165504672 

0.80 2.9404151201 2.9287703438 0.0116447764 

0.90 3.1486013905 3.0835296662 0.0650717243 

1.00 3.2667165936 3.2152995998 0.0514169938 

 

 

Figure 5. The graph of the solutions to problem 3 on table 3 
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Figure 6. The graph of the absolute error to problem 3 

 

5. Conclusion and Recommendation 

In this work, a single-step numerical method has been developed to solve higher-order ordinary differential 

equation of second-order via a transcendental interpolating function in a range with a basis function consisting of 

Exponential and Trigonometric functions. The choice of this basis function is to ensure that problems of such 

possess unique and continuously differentiable solutions. The numerical method tested and found reliable, 

efficient and less tedious compared to linear multistep methods which require reduction of higher order equations 

to system of first order equations.  

The requisite numerical method properties were obtained in like convergence, consistence, and stable. Three 

illustrative examples were solved to test the performance of the algorithms in terms of the absolute relative errors 

computed with the use of MATLAB codes. It was observed that the three examples both homogeneous and 

non-homogeneous second order special class of equations approximate solutions coincide with the exact solution 

as shown in the graphs (figures 2,3 and 4) as the step-size h is varied. Hence, the proposed numerical method can 

be considered to be instrument to solve physical problems in mechanics, and engineering.  
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