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Abstract 

This paper analyzes the monthly average temperature of Baotou City from January 1, 1973, to December 31, 2022. 

The data comes from the R language worldmet dataset, with 600 data. Observing the time series chart shows the 

data have obvious periodicity and seasonality, and there is no trend. The order ARIMA(1,0,1) × (1,0,1)12 s 

determined by observing the ACF and PACF diagrams, but since there is a trend term of AR, a difference is added 

to get P=1, D =1, Q=1. By comparing the AIC, BIC and σ^2 values of ARIMA(1,0,1) × (1,0,1)12  and 

ARIMA(1,0,1)× (1,1,1)12, the residual analysis diagrams are observed. The residual analysis diagrams are not 

very different, which reflects that the residual is white noise. The AIC, BIC and σ^2 values of the former are all 

smaller than those of the latter, so the time series model is determined as ARIMA(1,0,1)× (1,1,1)12 , and the 

expression is, 𝑥𝑡 = 0.2859𝑥𝑡−1 − 0.1122𝑤𝑡−1 − 1.0000𝑥𝑡−12 − 𝑤𝑡−12 + 0.0037. 

Where 𝑥𝑡 represents the predicted value at time point t, 𝑥𝑡−1 and 𝑥𝑡−12 represent the original observed value 

at time point t-1 and t-12, respectively, and 𝑤𝑡−1 and 𝑤𝑡−12 represent the residual term at time point t-1 and t-

12, respectively. The model takes into account the seasonality and trend of meteorological data and can fit the data 

well and make future temperature predictions. After residual analysis and model selection, the prediction effect of 

this model is good, the error is small, and it can provide a certain reference value. However, there may be 

shortcomings such as seasonal effects on forecast accuracy, which raises the need to improve models and study 

more meteorological data features. In general, meteorological data prediction based on time series analysis is an 

important research field, and more in-depth research and exploration are needed in the future to improve the 

prediction accuracy and provide better support for decision-making in the field of meteorology and climate. 
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1. Introduction 

1.1 Background and Significance of Research 

Meteorological change is a kind of time series data, and its change rules are time-dependent and continuous. 

Meteorological data time series analysis refers to the statistical and computational analysis of meteorological data 

to reveal the laws and trends in the time series, and to predict and forecast the future meteorological changes. It 

can be used to establish meteorological forecasting models, improve the accuracy and precision of meteorological 

forecasting, provide reliable meteorological forecasting services for agricultural production, energy development 

and other fields, help in-depth understanding of climate change, assessment of meteorological disaster risk, 

forecast meteorological change trends, etc., and have important reference value for formulating policies, planning, 

and decision-making in response to climate change. 

In short, time series analysis of meteorological data is of great significance for us to understand meteorological 

change, predict the trend of meteorological change, and provide an effective scientific basis for formulating 

policies to deal with climate change. 
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1.2 Data Sources and Description 

The data analyzed in this paper is the monthly average temperature of Baotou from January 1, 1973, to December 

31, 2022. There are a total of historical weather data of Baotou obtained from R language worldmet database. The 

specific data is obtained by import (NOAA) function, incoming station number, and time range. Obtain daily hour-

by-hour weather data for Baotou City from 1973 to 2022. The data source is from the National Oceanic and 

Atmospheric Administration (NOAA) weather station data, which saves various meteorological data including 

temperature, humidity, pressure, precipitation, and wind speed. This paper mainly analyzes the temperature of 

Baotou City. 

1.3 Data Preprocessing 

As this paper only analyzes the time series of air temperature in Baotou City, it only needs to select air_temp and 

date columns from weather data to form the data set and check whether there are missing values. It can be seen 

that missing values exist in the data set, and na.omit() function is used to remove rows containing NA values.  

Since the downloaded data is hour-by-hour air temperature data, it takes a long time to fit the SARIMA model, 

and the model fitting and merging with hour-by-hour air temperature data will not significantly improve the 

accuracy of predicting future air temperature. In order to better establish the seasonal model, it is conducive to 

predicting the future air temperature of Baotou City. It is necessary to average the hourly temperature data given 

by the original data on a monthly basis. In order to facilitate the monthly average value of hourly temperature data, 

lubridate function and mutate function are used to split the date column and the month column into the data set. 

Then group_by is used to group the temperature data box by Year and Month to calculate the average temperature 

in each month. Next, use the summarise function to calculate the average temperature of a month, with only the 

year, month and average temperature remaining in the data box. Finally, use the unite function to combine the year 

and month into a Date, separated by a hyphen “-”. The unite function adds a new date column to the data box and 

stores the result in a new data box named yearly_average. 

Next, check whether there are outliers in the data by drawing a box plot. It can be seen from Figure 1 that there 

are no outliers in the data. 

 

 

Figure 1. boxplot of average_temp 

 

The time series diagram of the data is drawn below to check whether there are trends and seasonality in the series. 

As can be seen from Figure 2, the time series image of the data is relatively stable, and does not show a steady 

upward or downward trend in one direction, so there is no trend. The time series image of the data has a certain 

periodicity, so the data has seasonality. In the subsequent modeling, it is necessary to carry out seasonal difference 
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of the data to find the seasonal term and establish the seasonal model. 

 

Figure 2. Time series diagram of average_temp 

 

2. Introduction of Model and Theories 

2.1 Introduction of Models 

2.1.1 AR Model 

AR (autoregression) model is a linear prediction model based on past observations. The AR model assumes that 

the value of the current time is a linear combination of observations at previous points in time, where past 

observations decay with decreasing weight coefficients. An autoregressive model is an extended form of a linear 

regression model, an autoregressive model of order p can be abbreviated as AR(p), the formula is as follows 

1 1 2 2 p···+t t t t p tx x x x w   − − −= + + + + , where tx  is stationary sequences, tw  is white noise. 

2.1.2 MA Model 

MA (Moving average) model is a linear prediction model based on the error term. The MA model assumes that the 

error at the current time is a linear combination of the error at the previous k time points, and has a mean of 0. The 

MA model can be represented by MA(q), and the representation error is the linear combination of the first q errors. 

The prediction formula of the Q order MA model is as follows 1 1 2 2 p···+t t t t t qx w w w w  − − −= + + + , where  

tw  is white noise. 

2.1.3 ARMA Model 

ARMA (autoregressive moving Average) model is a time series prediction model that takes into account both the 

observed value of the first p time points and the error of the first q time points. The ARMA model can be 

represented by ARMA(p, q), that is, both AR and MA models are considered. The prediction formula of ARMA 

model is as follows. 

1 1 1 1···+ +...t t p t p t t q t qx x x w w w    − − − −= + + + + +
 

2.1.4 ARIMA Model 

An 𝑥𝑡 process is called ARIMA(p, d, q)，if 𝛥𝑑𝑥𝑡 = (1 − 𝐵)𝑑𝑥𝑡  is ARMA(p, q). Normally this model is written 

as 𝛷(𝐵)(1 − 𝐵)𝑑𝑥𝑡 = 𝛼 + 𝜃(𝐵)𝑤𝑡, where 𝛼 = 𝛿（1 − 𝛷1 − ⋯ − 𝛷𝑝) and 𝛿 = 𝐸(𝛥𝑑𝑥𝑡). 
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2.1.5 Seasonal ARIMA Model 

Seasonal ARIMA model is a common time series forecasting model, which is widely used to deal with seasonal 

and periodic time series data. It is an extension of the ARIMA model, in contrast to the ARIMA model, the seasonal 

ARIMA model adds seasonal terms to account for the seasonal effects of the data. 

2.2 Order Determination 

The ACF index measures the correlation between the time series and its corresponding lag value, and represents 

the correlation between the previous p time points and the current time point. PACF is the calculation of the degree 

of correlation between the sequence and the current value at a given point in time, after removing the influence of 

other intermediate orders. They are implemented by calculating the statistical characteristics and order of the 

differences between the previous p time points and the current time point. For AR(p) model, the PACF image is 

truncated after the p order, while the ACF image is trailed; for MA(q) model, the ACF image is truncated after the 

q order, while the PACF image is trailed. Both ACF and PACF images of the ARMA model are trailing. 

2.3 Model Selection and Testing 

The residual analysis diagram of sarima function is used for white noise test to determine whether the model is 

suitable and select the best model. 

2.3.1 Standardized Residuals 

This graph is mainly used to judge whether the residual term of the time series satisfies the two basic assumptions 

of “random” and “linear”. If the residual term shows a tendency to fluctuate randomly around 0, then the 

randomness hypothesis can be considered valid. If the fluctuation range of the whole residual series is large, then 

the hypothesis is not valid; If the residual term has a significant nonlinear tendency, then the linearity hypothesis 

is also not valid. 

2.3.2 ACF of Residuals 

Autocorrelation function (ACF) graphs can be used to determine whether the residual terms have autocorrelation 

or partial autocorrelation characteristics. If the residual term is characterized by random fluctuations near 0, then 

ACF should oscillate at 0 and all peaks are insignificant. If there is a significant peak, it indicates that there is an 

autocorrelation in the residuals, which means that the model may have captured some features of the time series 

in the modeling and have not been fully fitted. 

2.3.3 Normal QQ Plot of Std Residuals 

The normal QQ graph is often used to check whether a set of data follows a normal distribution, and if the residual 

term is random and it follows a Gaussian distribution, then the points in the graph should be distributed on a 

straight line. If the graph curve has asymmetric, non-linear features, it may mean that the model is not fully 

capturing the distribution characteristics of the data. 

2.3.4 P value for Ljung-Box Statistic 

In time series analysis, Ljung-Box statistics can be used to test whether there is an autocorrelation in the residual 

term of the time series. If the p-value ratio is smaller than the significance level (such as 0.05), the null hypothesis 

can be rejected and the data set is considered to have autocorrelation. 

2.4 Model Prediction 

A well-fitted SARIMA model is used to predict some of the data, and the predicted results are compared with the 

actual values. Some common indicators, such as mean square error (MSE), are used to evaluate the accuracy of 

the forecast results. 

3. Empirical Analysis 

3.1 Order Determination 

First, the monthly mean temperature data of Baotou City from 1973 to 2022 were seasonally differentiated, and 

then the time series diagram (Figure 3), ACF and PACF diagram (Figure 4) were drawn. It can be seen from Figure 

3 that the data after the difference is stable, with no trend or cycle. 
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Figure 3. Time series diagram of monthly mean temperature data of Baotou City from 1973 to 2022 after 

seasonal difference 

 

In this paper, the seasonal ARIMA model will be fitted based on the monthly average temperature data of Baotou 

City from 1973 to 2022, and the order of the model needs to be determined by looking at the ACF and PACF charts 

of the data. It can be seen from Figure 4 that both ARIMA and seasonal terms are lagging behind by a large order. 

Considering the cases of P=1, Q=1, P=1, Q=1, model fitting is carried out, and it is found that the AR part of non-

stationary seasonality exists in the cases of P=1, Q=1, and the data needs to be stabilized by a difference. Therefore, 

consider making another difference in the seasonal term, that is, the seasonal component can consider 

ARIMA(1,1,1), P=1, D=1, Q=1. 

 

 

Figure 4. ACF and PACF charts of the monthly mean temperature data of Baotou City from 1973 to 2022 after 

seasonal difference 
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According to the order of the seasonal term in the above article, first try the data on ARIMA(1,0,1)× (1,1,1)12 

 

 

 

 

The residual analysis is shown in Figure 5. According to the p value for Ljung-Box statistic, it can be seen that 

most of the points are distributed above the dotted line, that is, for most of the residual p-value is greater than 0.05, 

but a small number of points are still distributed on the dotted line, and a small amount of autocorrelation may 

remain in the residual. It can be seen from the Normal Q-Q Plot of Std Residuals that the distribution of points is 

approximately a straight line, indicating that the residuals have good normality. 

 

 

Figure 5. ARIMA(1,0,1)× (1,1,1)12 Residual analysis diagram 
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3.2 Adding Parameters to Fit the Model in the Non-seasonal Terms of the ARIMA Model 

Since adding an AR parameter and an MA parameter has little effect on the model, only adding a difference 

parameter (d=1) is considered, and the model becomes ARIMA(1,1,1)× (1,1,1)12 

 

 

 

 

Compared with ARIMA(1,0,1) × (1,1,1)12 , the residual analysis diagram shows that the fit degree is not 

significantly improved, and AIC, AICc, BIC, σ^2 are more inclined to ARIMA(1,0,1)× (1,1,1)12.  

 

 

Figure 6. ARIMA(1,1,1)× (1,1,1)12 Residuals Analysis Diagrams 
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3.3 Model Prediction 

ARIMA(1,0,1)× (1,1,1)12 is used to forecast the monthly average temperature of Baotou City from January to 

May 2023 to verify the accuracy of the model. 

First, the monthly average temperature data of Baotou City from January to May 2023 were downloaded and 

processed in the same way as the data download and processing mentioned above, as shown in Figure 7: 

 

 

Figure 7. Monthly average temperature data from January to May 2023 in Baotou City 

 

The sarmi.for () function is used to predict the average temperature for the next five months, with the following 

results: 

 

 

Figure 8. ARIMA(1,0,1)× (1,1,1)12 model is used to forecast the monthly mean temperature data of Baotou City 

in the past five months 
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Compared with the original data, it can be seen that the fitting error of air temperature data is small. It can be seen 

from the figure that the predicted future air temperature data can basically maintain the same seasonality as before. 

It is found that MSE is a relatively small value, so it can be considered that the prediction effect of the model is 

better. 

 

 

 

Figure 9. ARIMA(1,1,1)× (1,1,1)12 and ARIMA(1,0,1)× (1,1,1)12 MSE value contrast 

 

As can be seen from Figure 9, the MSE of ARIMA(1,1,1)× (1,1,1)12  is larger than that of ARIMA(1,0,1)×
(1,1,1)12, which further confirms that ARIMA(1,0,1)× (1,1,1)12 is a better model. 

4. Conclusion and Prospect 

In this paper, the monthly mean temperature of Baotou City from January 1, 1973, to December 31, 2022, is 

analyzed and modeled in time series. Through the analysis in this paper, the monthly mean temperature data of 

Baotou City can be predicted by the following models: 

𝑥𝑡 = 0.2859𝑥𝑡−1 − 0.1122𝑤𝑡−1 − 1.0000𝑥𝑡−12 − 𝑤𝑡−12 + 0.0037 

Where 𝑥𝑡 represents the predicted value at time point t, 𝑥𝑡−1 and 𝑥𝑡−12 represent the original observations at 

time points t−1 and t−12, respectively. 𝑤𝑡−1 and 𝑤𝑡−12 represent the residual term at time points t-1 and t-12, 

respectively. 

The analysis in this paper still has some shortcomings, such as only roughly determining the order of the model 

without in-depth exploration of the trend of the data, and the prediction of future temperature is not accurate 

enough, and there are still errors. It can be seen from the coefficients of the model that the coefficients of AR term 

and MA term are relatively small, while the coefficients of seasonal MA term are close to -1, indicating strong 

seasonal changes. At the same time, the coefficient of the constant term is also relatively small, but the p-value is 

0, indicating that the influence of the constant term is significant. The defect of this model is that the prediction 

accuracy of the model may be affected by seasonal changes, because the seasonal MA term coefficient is close to 

-1, and if there is a large deviation in seasonal changes, the accuracy of the prediction results may be affected. Of 

course, this also needs to be assessed according to the actual situation. In addition, there may be other unknown 

factors affecting the model, and more data and feature engineering are needed to further improve the accuracy of 

the model. 

In view of these shortcomings and deficiencies, more rigorous methods can be selected to determine the order of 

the model, and other feature variables can be considered, such as increasing the weather data involved in training 

the model. In addition, more complex models, such as deep learning models, can be explored to predict time series 

data. At the same time, it is also possible to try different seasonal parameter combinations to obtain better fitting 

results, discuss the trend problem in the data in detail instead of ignoring it, and choose a better model for prediction 

to reduce the error. 
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Appendix 

code 

library (worldmet) 

library (ggplot2) 



INNOVATION IN SCIENCE AND TECHNOLOGY                                                   JUL. 2023 VOL.2, NO.4 

60 

library (astsa) 

library (tidyverse) 

library (forecast) 

library (tseries) 

#getMeta (site = “BAOTOU”) 

getMeta (lat = 41, lon = 110) 

data<-importNOAA (code = “533520-99999”, year = c (1973,1974:2022)) 

write.csv (data, file = “Linlin Gong_11_baotou.csv”, row.names = FALSE) 

data<-read_csv (“Linlin Gong_11_baotou.csv”) 

#temperature 

temperature<-data[,c(1,9)] 

skimr::skim (temperature) 

temperature<-na.omit (temperature) 

skimr::skim (temperature) 

temperature <- temperature %>% 

  mutate (Month = lubridate::month (date)) 

temperature <- temperature %>% 

  mutate (Year = lubridate::year (date)) 

month_average <- temperature %>% 

  group_by (Year, Month) %>% 

  summarise (average_temp = mean (air_temp, na.rm = TRUE)) 

month_average <- month_average %>% 

  unite (Date, Year, Month, sep = “-”) 

ggplot (month_average, aes(,average_temp))+ 

  geom_boxplot() 

tsplot (month_average$average_temp) 

acf2 (month_average$average_temp) 

 

tsplot (diff(month_average$average_temp,12)) 

acf2 (diff(month_average$average_temp,12)) 

sarima (month_average$average_temp, p=1, d=0, q=1, P=1, D=0, Q=1, S=12) 

sarima (month_average$average_temp, p=1, d=0, q=1, P=1, D=1, Q=1, S=12) 

sarima (month_average$average_temp, p=1, d=1, q=1, P=1, D=1, Q=1, S=12) 

 

#test 

test<-importNOAA (code = “533520-99999”, year = 2023) 

test<-test[,c(1,9)] 

test<-na.omit(test) 

test <- test %>% 

  mutate (Month = lubridate::month(date)) 

test <- test %>% 

  mutate (Year = lubridate::year(date)) 

test <- test %>% 

  group_by (Year, Month) %>% 
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  summarise (average_temp = mean(air_temp, na.rm=TRUE)) 

test <- test %>% 

  unite (Date, Year, Month, sep = “-”) 

test<-test[1:5,] 

write.csv (test, file=“test.csv”, row.names = FALSE) 

pred_value1<-sarima.for (month_average$average_temp,5,1,0,1,1,1,1,12) 

mean ((test$average_temp - pred_value1$pred)^2) 

pred_value2<-sarima.for (month_average$average_temp,5,1,1,1,1,1,1,12) 

mean ((test$average_temp - pred_value2$pred)^2 

The data of the training model and the test data are detailed in Annex 1 and Annex 2 respectively. 

Annex 1: Linlin Gong_11_baotou.csv 

Annex 2: test.csv 
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