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Abstract 

The accurate classification of transmission line faults has been a key issue in the development of smart grids. At 

present, fault classification is based on recurrent neural network (RNN) for temporal signals, and the development 

of RNN is not so mature compared with convolutional neural network (CNN). Therefore, this paper proposes a 

transmission line fault classification algorithm based on higher-order spectral analysis and CNN, aiming at 

converting the time-series signals into images and using CNN for fault classification. After establishing the fault 

model on Matlab/Simulink, the current signals of different faults are obtained. After processing the current signals 

to extract their zero-mode currents, the fault image signals are obtained using higher-order spectral analysis as the 

input to the CNN. Simulation results show that the proposed method can accurately identify faults with high 

accuracy when faults occur in transmission lines, thus reducing the economic losses caused by faults. 
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1. Introduction 

The power system has five main links: power generation, power transformation, power transmission, power 

distribution and power consumption, of which transmission and distribution are the intermediate links and play 

the function of transmission. Each link is composed of generators, transformers, transmission lines, distribution 

lines and other devices. The transmission line is an important facility for transmitting electric power in the power 

system. In the power system, short-circuit faults can cause huge losses if the zone protection of each part is not 

installed with corresponding relay protectors. Among these, transmission line faults account for about 50% of the 

total faults (J. Rajashekar & A. Yadav, 2022). The probability of single-phase grounding fault is the largest, 

accounting for about 80% of the total number of faults in the distribution network, while single-phase grounding 

faults, when not repaired in time, can then evolve into phase-to-phase ground faults. 

With the innovation in recent years, the traditional power system has developed to a smart grid power system, the 

traditional model-based technology is more difficult to carry out on the more open and complex smart grid, 

artificial intelligence is the key to the future progress and development of smart grid. The increasing complexity 

and variability of the distribution grid operating environment as well as the continuous development of a large 

scale, the probability of failure is relatively high. Grounding faults will not only lead to serious safety problems, 

but also adversely affect the power supply quality of the power system. 

At present, researchers at home and abroad have achieved some results in fault diagnosis of transmission lines. 

The literature (Li LF, Rao D, Fan R, Zhang H, Wang J, Luo HY, Liu Z & Xu GH, 2022) takes the pre-processed 

traveling wave data and trains the data using Long-Short term Memory (LSTM) networks. In the literature (Liu F, 

Li YK, Gao F, et al, 2021), wavelet scattering feature extraction is performed on the fault zero sequence current 

signal to obtain the fault feature vector, which is then input to the Bi-LSTM network for training. The literature 
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(R. Resmi, V. Vanitha, E. Aravind, B. R. Sundaram, C. R. Aswin & S. Harithaa, 2019) provides all the collected 

three-phase voltages and currents to the Artificial Neural Network (ANN) algorithm for detecting the fault type. 

The literature (M. R. Bishal, S. Ahmed, N. M. Molla, K. M. Mamun, A. Rahman & M. A. A. Hysam, 2021) 

developed artificial neural network algorithm using feedforward artificial neural network. The root means square 

values of the collected three-phase voltages and currents are fed into the ANN for fault classification. In the 

literature (M. Li, Y. Yu, T. Ji & Q. Wu, 2019), in order to improve the training speed of traditional LSTM networks, 

FC-LSTM networks were proposed to reduce the training complexity of the temporal data by adding a filter to 

enhance the calibration. In the literature (Z. Wan, L. Hui & L. Yongkang, 2020), the zero-sequence current after a 

fault is decomposed into variable modes, and the decomposed signal and the original signal are input to a Bi-

LSTM network for fault diagnosis. 

However, current transmission line fault diagnosis is performed by researchers using temporal data and using RNN 

for fault detection and classification. The technical aspects of temporal data processing may not be as mature as 

image processing compared to image processing. However, in terms of image processing, transmission line fault 

diagnosis mostly refers to unmanned aircraft inspection and the diagnosis of external faults such as insulator 

defects (Y. Bao & T. Chen, 2020; X. Liu, X. Miao, H. Jiang & J. Chen, 2021; X. Zhang et al, 2021). 

In this paper, a new fault diagnosis algorithm will be proposed to convert the collected temporal data into image 

data, i.e., temporal processing into image processing. The technology of neural network in image processing is 

very mature, and better fault diagnosis results can be obtained by using image processing. 

2. High-Order Spectral Analysis 

Higher-order spectral analysis is a method that allows an efficient feature extraction of the signal and usually 

requires the calculation of the bispectrum and the bicoherence spectrum, which is the normalized bispectrum (L. 

Gagliano, E. B. Assi, M. Sawan & D. K. Nguyen, 2018). This method is based on the Fourier transform of the 

higher-order correlation function, which provides information on phase and power and allows the detection of 

asymmetric nonlinearities between different frequency components of the signal. 

Higher-order spectral analysis is very effective in identifying nonlinear and non-Gaussian stochastic processes and 

deterministic signals, and among them, second-order spectral analysis (Yu F, Zhao J, Qiu Z. Y et al, 2022) is widely 

used in fields such as image reconstruction. The second-order spectral analysis method can well suppress the phase 

relations in the signal and detect and quantify the phase coupling of non-Gaussian signals. In this paper, this method 

is applied to the feature extraction of faulty fault signals. 

The bispectrum is a complex quantity and the equation can be expressed as: 
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3 1 2( , )xc    is the third order cumulative quantity, E is the arithmetic average. 

Normalization of the bispectrum, which is calculated by dividing the bispectrum by the square root of the actual 

triple product of the power spectrum, provides a quantitative indicator of the variance independent of the signal 

energy and is referred to as the bicoherent spectrum, as shown in: 
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where ( )X f denotes the Fourier transform value of ( )X f at frequency f. 

3. Convolutional Neural Networks 

The deeper the depth of the convolutional network, the more advanced the extracted features and the better the 

performance, but the traditional CNN faces the problems of network degradation, gradient disappearance and 

gradient explosion as the depth of layers increases, making the performance of the higher-level network instead 

inferior to that of the shallow network. Therefore, this paper draws on the classical CNN model ResNet50. 
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The design idea of ResNet50 is to solve the problem of gradient disappearance and model degradation in deep 

networks through residual connectivity, thus ensuring that the model can better learn feature representations. The 

residual module is shown in Figure 1, where x is the constant mapping and F(x) is the residual mapping. The input, 

x, is divided into two ways, with the input x entering the first weight layer to obtain the mapping function F(x); the 

Relu activation function is used to enter the second weight layer. The two are summed into the activation function 

and then the output Relu(F(x)+x). The residual network enhances the exchange of information and communication 

between network layers by connecting across layers and mapping shallow features directly into deep features. 

Weight layer

Weight layer

F(x)

x

Relu

+

x

identity

F(x)+x

Relu

 

Figure 1. Residuals module 

 

ResNet50 is a deep convolutional neural network architecture for image classification, with 50 layers. The input 

image is typically 224 x 224 pixels with 3 channels (RGB). The ResNet50 architecture consists of five 

convolutional stages, each consisting of residual blocks and shortcut connections. The final fully connected layer 

and Softmax activation are responsible for mapping features into classification probabilities, and the main structure 

is shown in Table 1. 

 

Table 1. Resnet50 main structure 

Layer name Output size ResNet50 

Conv1 112×112 7×7, 64, stride 2 

Conv2_x 56×56 

3×3 max pool, stride 2 

1,64

3 3,64 3

1 1, 5

1

2 6

 
 




 




  

 

Conv3_x 28×28 

1,128

3 3,128 4

1 1

1

,512

 




 
 





 

 

Conv4_x 14×14 

1,256

3 3,256 6

1 1,

1

1024

 





 
 



 



 

Conv5_x 7×7 

1,512

3 3,512 3

1 1,

1

2048

 





 
 



 



 

 1×1 Average pool, 1000d-d fc, softmax 

Flops  3.8×109 
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4. Simulation Results 

In order to verify the performance of the proposed algorithm, the transmission line model shown in Figure 2 is 

built in Matlab/Simulink. 

 

 

Figure 2. Schematic diagram of transmission line model 

 

In Figure 2, a transmission line fault model with a total length of 200 km, 220 kV, and 50 Hz is constructed. The 

model is connected to the power supply at both ends, and the fault current signal at one end is measured by a 

measurement element with a sampling rate of 100 KHZ. The acquired fault current signal is phase-mode 

transformed to obtain its zero-mode component, which provides the necessary data for transmission line fault 

diagnosis. The next step uses second-order spectral analysis to transform the processed current signal into a two-

bit feature image, which preserves as much as possible the useful features of the signal. The specific parameters 

are shown in Table 2. 

 

Table 2. Experimental parameters 

Failure 

parameters 

Fault Type AG,BG,CG,AB,BC,CA,ABG,BCG,CAG,ABC 

Fault distance (Km) 5,6,7,8,…,195 

Fault resistance (Ω) 0.01,1,10,50,100 

Transmission line 

parameters 

Positive sequence and zero 

sequence resistance (Ω/Km) 
0.17,0.23 

Positive sequence and zero 

sequence inductance (H/Km) 
1.21e-3,5.48e-3 

Positive sequence and zero 

sequence capacitance (F/Km) 
9.7e-9,6e-9 

Power supply parameters 
Phase voltage (V) 220k 

Frequency 50Hz 

 

Simulate all the fault cases in Matlab/Simulink and perform phase mode transformation on the fault current signals 

to get all the zero sequence current signals. Export all the zero sequence current signals as mat files for saving to 

prevent data loss. For the stored zero sequence current signals, the second order spectral features are extracted in 

turn, and each zero sequence current timing signal is transformed into a two-dimensional feature image of the zero 

sequence current, as shown in Figure 3. 

Figure 3 shows the fault images extracted by second-order spectral analysis. Due to the large number of fault 

images, only images of each fault type were randomly selected from the various types of faults. These fault images 

were labelled to reflect each of the ten fault types as shown in Table 3. After second-order spectrum extraction, 

although all images of the same fault were slightly different, their key features could be accurately discriminated 

by the neural network. 
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Table 3. Fault types and corresponding labels 

Fault Type Label 

AG 1 

BG 2 

CG 3 

AB 4 

BC 5 

CA 6 

ABG 7 

BCG 8 

CAG 9 

ABC 10 

 

In this aspect of image classification, CNN is the most maturely developed, and this time ResNet50 will be used 

to perform fault diagnosis. In this paper, 9550 fault sample sets are obtained by Matlab/Simulink simulation for 

ten types of faults and five different fault resistances. The sample set is divided into training set, validation set and 

test set according to the ratio of 8:1:1. The neural network learning rate was set to 0.001, the batch size was set to 

128, the number of iteration rounds was 13, and the optimizer was selected as adam optimizer. Figure 4 shows the 

accuracy and loss of the training, where the accuracy of the validation set is 99.06% and the accuracy of the test 

set is 99.26%. 

 

 

(a)                                           (b) 

 

(c)                                            (c) 
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(d)                                         (e) 

  

(f)                                         (g) 

 

(i)                                      (j) 

Figure 3. Second-order spectrum of fault signal 

Note: (a) Second-order spectrum of AG faults; (b) Second-order spectrum of BG faults; (c) Second-order spectrum 

of CG faults; (d) Second-order spectrum of AB faults; (e) Second-order spectrum of BC faults; (f) Second-order 

spectrum of CA faults; (g) Second-order spectrum of ABG faults; (h) Second-order spectrum of BCG faults; (i) 

Second-order spectrum of CAG faults; (j) Second-order spectrum of ABC faults 
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Figure 4. Training progress chart 

 

In order to comparatively assess the superiority of the performance of the proposed method in this paper, an 

objective evaluation of each type of algorithm is performed, and the results are shown in Table 4. 

 

Table 4. Comparison of algorithms 

Algorithms Accuracy 

Algorithm in this paper 99.26% 

Algorithm in literature (J. Rajashekar & A. Yadav, (2022)  96.7% 

Algorithm in literature (A. Bhuyan, B. K. Panigrahi, K. Pal & S. Pati, 2022) 95.45% 

 

The algorithm proposed in the literature (J. Rajashekar & A. Yadav, 2022) feeds fault and unfaulted current and 

voltage data into an LSTM network and achieves an accuracy of 96.7% for its test set. The algorithm proposed in 

(A. Bhuyan, B. K. Panigrahi, K. Pal & S. Pati, 2022) feeds all fault current and time maps into a convolutional 

neural network and achieves an accuracy of 95.45%. The algorithm proposed in this paper uses higher-order 

spectral analysis to represent the one-dimensional signal as a two-dimensional matrix as the input to the neural 

network, and its accuracy will be greatly improved, which is a novel method. The accuracy of the algorithm 

proposed in this paper, whose algorithm is high compared to that of other algorithms in the literature, reaches 

99.26% accuracy in the test set. Compared with literature (J. Rajashekar & A. Yadav, 2022) and literature (A. 

Bhuyan, B. K. Panigrahi, K. Pal & S. Pati, 2022), the focus of this paper is on converting the time-series data into 

images. With the algorithms in this paper, key fault features can be extracted that can be accurately identified by 

the neural network. In terms of dealing with the classification of transmission line faults, this paper has some 

research value by converting the time-series data into images that can be used to classify faults by ResNet50. 

5. Conclusion 

This paper is the first application of higher-order spectral analysis method to transmission line fault diagnosis in 

deep learning, which was first proposed in the field of medical heart-lung sound detection. The fault timing signal 

of transmission line is transformed into a two-dimensional feature image by the higher-order spectral analysis 

method, i.e., the one-dimensional signal is represented as a two-dimensional matrix, and then the fault diagnosis 

originally applied to RNN is changed into image processing in CNN. The neural network model is constructed by 

Matlab, and the simulation comparison results show that the proposed method has high accuracy and practicality, 

and the diagnosis results are not affected by the fault distance and transition resistance. 
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The current technology of neural networks in image processing is very mature, and this paper converts the time-

series signals into images, which is more general and more consistent with the mechanism of most problems 

compared to RNN. Deep learning has been very widely used in computer vision, and visual image data is two-

dimensional data, while data in the field of transmission line fault diagnosis, which comes from sensor acquisition, 

is a typical one-dimensional time series. If time series or one-dimensional arrays are transformed into images, and 

then deep learning models are applied to do analysis, it is a very good method. 
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