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Abstract 

This paper investigates the reliable deployment algorithm for Service Function Chains (SFC) based on deep 

reinforcement learning. SFC, as a chained function composition for complex network services, plays a crucial 

role in improving network efficiency and stability. To address the issue of existing SFC deployment algorithms 

that overlook the reliability of network functions and links, this paper proposes a deep reinforcement 

learning-based algorithm that utilizes a virtual network function and virtual link reliability mapping model for 

optimization. By learning the mapping between system states and actions, the algorithm can optimize the 

deployment strategy of SFC, thereby enhancing its reliability and performance. Experimental results 

demonstrate that the proposed algorithm can significantly improve the reliability of SFC and have practical 

implications for network service deployment. 
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1. Introduction 

With the rapid development of cloud computing and network technologies, Service Function Chain (SFC) has 

emerged as a promising network architecture for implementing complex network services. SFC connects 

multiple network function instances in a specific order to meet different business requirements and provide 

efficient network services. However, the current SFC deployment algorithms still face challenges in considering 

the reliability of the function chain. Ensuring the reliable deployment of SFC is crucial for improving network 

efficiency and stability, which requires taking into account the reliability requirements of network functions and 

links. Specifically, the reliability requirements of virtual network functions and the mapping of links between 

functions play a key role in the overall system performance. Therefore, it becomes an urgent issue to optimize 

SFC deployment through well-designed algorithms while considering reliability to enhance its performance. In 

summary, this research paper is significant for addressing the reliable deployment issue of SFC and improving 

network efficiency and stability (Fang B & Guo T., 2022). Through in-depth analysis of the SFC system model, 

proposing innovative algorithms, and conducting experimental validations, we aim to provide new insights and 

methods for the reliable deployment of SFC, as well as theoretical foundations and practical guidance for 

optimizing and enhancing network functions. 

2. Service Function Chain System Model 

In this paper, we study the basic model of providing end-to-end services in a network virtualization environment. 

As shown in Figure 1, the end-to-end service function chain starts from the end devices and deploys virtual 

network functions (VNFs) in a sequential manner through the access network and the core network to meet the 

corresponding business requirements. The figure illustrates two slices, with SFC1 representing the service 

function chain of Slice 1 and SFC2 representing the service function chain of Slice 2. 
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Figure 1. Scenario diagram of the system 

 

The virtual subnets composed of these service function chains are constructed and managed by Service Providers 

(SPs). To achieve global management, SPs can utilize a Global Service Orchestrator (GS-O) to coordinate the 

deployment and configuration of each service function chain. The GS-O is responsible for service orchestration 

and coordination to ensure the smooth operation of the entire network. On the other hand, Infrastructure 

Providers (InPs) are responsible for building and maintaining the underlying physical infrastructure. InPs 

provide reliable resources to SPs through standardized interfaces in accordance with the resource requests from 

SPs, supporting the deployment and operation of service function chains (Xi S, Xiaoqin Z, Yong Y, et al., 2022). 

In this system model, SPs and InPs cooperate and interact to provide services and allocate resources. SPs rely on 

the GS-O to manage and orchestrate service function chains, while InPs provide reliable infrastructure to support 

the deployment and operation of service function chains. This collaborative model allows end-to-end service 

function chains to be flexibly and reliably delivered to end users. By studying this service function chain system 

model, we can gain a better understanding of the basic architecture and operation mechanisms of service 

provision in virtualized network environments. This helps us further explore and optimize reliable deployment 

algorithms for service function chains, enhancing network performance and efficiency. 

3. Virtual Network Function and Virtual Link Reliability Mapping Models 

3.1 Virtual Network Function Reliability Requirement Determination Model 

In an SFC, each Virtual Network Function (VNF) has different topological and functional characteristics, 

resulting in varying impacts, recovery difficulties, and recovery time in the event of failures. To determine the 

importance of each VNF in case of failures and further establish their corresponding reliability requirements, this 

paper presents a model for determining the reliability requirements of virtual network functions (Li H, Ao C, Xu 

Y, et al., 2016). 

To achieve this goal, it is necessary to consider some reference features that possess different dimensions and 

require normalization. Here are some explanations of the reference features: 

1) VNF sharing degree: Due to functional reuse, a single VNF may be shared by multiple SFCs. If a shared 

VNF fails, it will impact all related services. Therefore, the degree of VNF sharing determines its 

importance. In this paper, the number of SFCs that share the same VNF is defined as the VNF sharing 

degree ( ). To avoid excessive sharing that would increase the probability of shared failures, the 

maximum sharing degree is set to 4. The normalized result is represented as shown in Formula (1). 
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2) Recovery cost: Each VNF incurs corresponding resource consumption during recovery, and the higher the 

resource demand, the lower the likelihood of recovery. Therefore, VNFs with high resource requirements 

need higher reliability. The normalized result is represented as shown in Formula (2). 
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3) VNF functional importance: Different VNFs have different degrees of functional importance for 

Infrastructure Providers. For example, VNFs involved in global control and data processing in the core 

network are relatively more important compared to VNFs in the access network. Based on experience, the 

functional importance of each VNF can be determined, and higher reliability requirements can be assigned 

accordingly. Let the importance score be xI, recorded in a scoring table. The normalized result is 

represented as shown in Formula (3). 
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4) VNF state: VNF states can be categorized as relevant states and unrelated states. Unrelated states are 

modified as data flows arrive and are processed, requiring more time and cost for recovery. Therefore, 

VNFs in unrelated states require higher reliability. In this paper, unrelated states are assigned a value of 1 in 

the VNF state, while the absence of unrelated states is assigned 0.5. 

By conducting a comprehensive analysis and normalization of these reference features, we can determine the 

importance of each VNF in the event of failures and further establish their corresponding reliability requirements. 

This will help us formulate reasonable deployment strategies to enhance the reliability of virtual network 

function chains (Yanghui, Fu, Xingxing, et al., 2020). 

3.2 Reliable Mapping Model for Links Based on Functional Multiplexing 

The research in this paper considers the joint optimization of functional reuse and functional deployment as well 

as bandwidth requirements, aiming to find the optimal balance between functional reuse and path length. To 

achieve this goal, the deployment problem is decomposed into two key steps. 

First, we need to set the maximum value of the number of transmission hops ku . The number of transmission 

hops is the number of network nodes to be traversed in the path. The length of the path is closely related to the 

multiplexing of the link, since longer paths tend to reduce the reliability of the link. Therefore, we can try to 

satisfy the link reliability requirement by controlling the link length ku . Thus, it can be obtained as shown in 

Formula (4): 

+= ][log k
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                                 (4) 

Where []+ denotes upward rounding, rl is the average reliability of the base link, denoted as shown in Formula 

(5), where |L| denotes the number of base links. 
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After determining the range of transmission hops, the next crucial step is to find the path with the highest degree 

of reuse within this range. Reuse degree refers to the number of network resources and links that can be reused 

along the path. When the reuse degree of a path is high, we can optimize resource utilization to the maximum 

extent and meet the bandwidth requirements of various services (Zhao T, Wang P & Li S., 2020). 

In the link reliability mapping model based on functional reuse, our goal is to achieve reliable deployment of 

function chains and satisfy the bandwidth requirements by selecting suitable paths. We attempt to find the 
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optimal balance between functional reuse and path length, maximizing the reuse degree of the path while 

ensuring link reliability. One possible approach to achieving this goal is to determine the maximum value of 

transmission hops based on link reliability requirements. By setting an appropriate reliability threshold, we can 

balance link reliability and reuse degree based on the length of the links. In this way, we can control the link 

length ( ku ) to meet the link’s reliability requirements as much as possible while improving the reuse degree of 

the path. 

In conclusion, the link reliability mapping model based on functional reuse plays a crucial role in the joint 

optimization process of function deployment and bandwidth requirements. By setting the maximum value of 

transmission hops and controlling the link length, we can find the path with the highest degree of reuse while 

meeting link reliability requirements. This will provide significant improvements and optimizations in network 

reliability, bandwidth utilization, and service quality. Additionally, we believe that this model will provide 

valuable guidance for network management and resource scheduling, ensuring better reliability and performance 

of the network. 

4. Algorithm Description and Analysis 

4.1 Deep Reinforcement Learning Based Algorithm for Reliable Mapping of Service Function Chains 

Deep reinforcement learning (as shown in Figure 2) is the application of deep learning’s strong perceptual 

capabilities to the decision-making process of reinforcement learning, seeking the optimal policy by maximizing 

cumulative rewards. In this paper, deep reinforcement learning is applied to the reliable mapping problem of 

service function chains in the SDN/NFV architecture (WAN K, GAO X, HU Z, et al., 2020). GS-O is used to 

collect, analyze, and execute mapping strategies based on business information. However, due to the unknown 

VNF sharing degree, continuous interaction with the virtual and underlying layers is required to explore the 

environment, identify suitable VNF reliability requirements, and obtain the best deployment solution. 

 

 

Figure 2. Deep reinforcement learning algorithm network structure 

 

The defined state space is st = {Bleft, Cleft, bmap, Cmap}. Here, Bleft and Cleft represent the sets of remaining 

node resources and link resources, respectively, representing the state of the underlying layer. Bmap and Cmap 

are the sets of mapped components in the service function chain, representing the corresponding virtual network 

state. The node state includes the deployed node results and the degree of sharing, while the link state represents 

the deployed links. The action space is defined as at = {an, al, ao}, where an represents the node mapping action, 

al represents the link mapping action, and ao represents the resource allocation action (Zou X, Yang R, Yin C, et 

al., 2019). During the deployment process, if the selected physical node already hosts the VNF, the VNF can be 
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reused, and the weight values can be recalculated. If the node does not host the VNF, computational resources 

need to be consumed to instantiate the VNF. To avoid learning from invalid action states, the action space can be 

filtered based on certain criteria, including path length limitation, resource limitation, and reliability limitation, 

resulting in a subset as shown in Formula (6). 
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In this paper, a convolutional neural network (CNN) is used to approximate the Q-value function. Vectors [st, at, 

rt, st+1] are obtained through exploration of the environment and stored into the experience replay pool. Then, a 

random set of vectors is selected for training, allowing the neural network to accurately estimate the Q-values. 

Since the initial neural network may not provide correct Q-value estimates, the parameters of the network are 

adjusted using the immediate rewards generated by the immediate actions and the Q-values of the next state that 

reflect long-term rewards. To prevent overestimation of Q-values, two identical neural networks are used to 

separately estimate the current Q-values and the Q-values of the next state. The network estimating the current 

Q-values is referred to as the main neural network, while the network estimating the Q-values of the next state is 

called the target neural network. 

The service function chain reliable mapping algorithm based on deep reinforcement learning can find the 

optimal deployment strategy in complex network environments by learning and optimizing the Q-value function. 

By exploring the state space and selecting appropriate actions, we can maximize the function reuse while 

ensuring link reliability, optimize resource utilization, and meet bandwidth requirements. The application of this 

algorithm will help improve the performance and reliability of service function chains, as well as enhance the 

efficiency and user experience of the entire network. 

In summary, the service function chain reliable mapping algorithm based on deep reinforcement learning 

combines the perception ability of deep learning with the decision-making process of reinforcement learning. It 

seeks the optimal deployment strategy by maximizing cumulative rewards. By fitting the Q-value function and 

exploring the state space, we can achieve maximum function reuse, optimize resource utilization while ensuring 

link reliability, and meet bandwidth requirements. The application of this algorithm will help improve network 

performance and user experience, further promoting the development and application of SDN/NFV architecture. 

4.2 Node Backup Algorithm Based on Functional Importance of Virtual Networks 

When the reliability of the Virtual Network Function (VNF) is in high demand and there is no node that has been 

selected 
iknN   is empty, we can use a backup-based approach to improve the reliability of the nodes. This is 

done by selecting two nodes for deployment, one of which is used as a backup node.  

The node backup algorithm based on the importance of virtual network functions (VNFs) fully considers the 

importance of VNFs and enhances the redundancy and fault tolerance of nodes by introducing backup nodes to 

ensure service reliability in case of node failures. 

During the node selection process, we need to consider the importance of each node and determine the backup 

node based on the reliability requirements of the VNF. By simultaneously selecting two nodes and designating 

one node as the backup, we can quickly switch to the backup node to ensure service continuity and availability, 

thus reducing the risk of service interruptions in case of node failures. 

The node backup algorithm based on the importance of virtual network functions provides a flexible solution, 

particularly suitable for scenarios with high reliability requirements. By considering the importance of functions 

and the selection of backup nodes, we can effectively improve the reliability of nodes. The application of this 

algorithm can guarantee reliable network services even in the event of failures, avoiding business interruptions 

and service unavailability (Zhu J, Wu F & Zhao J., 2021). 

In summary, the node backup algorithm based on the importance of virtual network functions enhances the 

reliability of VNFs by selecting two nodes and introducing a backup node. In situations where VNF reliability is 
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high and no selected node is available, the backup mechanism of nodes ensures fast switching and continuous 

service availability. The application of this algorithm provides a feasible solution to ensure the reliability of 

network services and helps enhance user experience and satisfaction. 

5. Simulation Experiments and Performance Analysis 

This paper designs a series of simulation scenarios to evaluate the performance of the proposed algorithm. The 

underlying network consists of 50 physical nodes and several links, where the CPU and link bandwidth 

resources of nodes are randomly distributed within the range of [40, 90]. The number of virtual nodes in each 

Service Function Chain (SFC) is uniformly distributed within the range of [4, 7], and the CPU and bandwidth 

requirements of virtual nodes are uniformly distributed within the range of 1 to 15. Additionally, 10 types of 

VNFs are set, and the importance of each type of VNF is randomly generated within the range of 1 to 5. 

We compare the request acceptance rates of three different methods through simulation experiments. As shown 

in Figure 3, a total of 5000 time units of simulation were executed, generating approximately 500 virtual 

network requests. The DQN-RDA algorithm takes into account the distribution of resources in the underlying 

environment and deploys based on the principles of resource load balancing and minimizing reliability waste. 

Compared to the CCI-RA and PARD methods, DQN-RDA considers more comprehensive factors. Therefore, it 

achieves a higher request acceptance rate, maintaining it at around 90%. 

 

 

Figure 3. Comparison of SFC request acceptance rates 

 

In order to evaluate the backup effectiveness of each algorithm under different reliability requirements, the SFC 

containing seven virtual nodes is used for validation. As shown in Figure 4, DQN-RDA consumes the least 

number of backup nodes. It firstly considers to fulfill the reliability requirements as directly as possible during 

the deployment process and secondly reduces the resource consumption by sharing the backups (Yong-Qiong 

Zhu, Ye-Ming Cai & Fan Zhang, 2022). 
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Figure 4.  

 

By deploying the same set of SFCs in the underlying network and simulating the failure of physical nodes based 

on the probability of reliability failure, the impact of different algorithms on the failure of physical nodes is 

validated. As shown in Figure 5, the DQN-RDA method can minimize the impact of failures to the greatest 

extent. 

 

Figure 5. Comparison of SFC Failure Losses 

 

Finally, the impact of learning efficiency on convergence effectiveness in deep reinforcement learning is verified 

by adjusting the learning rate. As shown in Figure 6, as the learning rate decreases, the convergence rate 

decreases, but the amplitude of oscillations after convergence becomes smaller and more stable. Higher learning 

rates lead to larger updates in Q-values and faster parameter updates, but they also result in greater fluctuations 

in parameter values, making it difficult to converge to a relatively stable value. Therefore, it is necessary to set 

an appropriate learning rate based on practical requirements. 
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Figure 6. Effect of learning rate on convergence effect 

 

In summary, through simulation experiments and performance analysis, we verify the effectiveness and 

reliability of the proposed algorithm. Under different simulation scenarios, the DQN-RDA algorithm shows 

better performance in terms of request acceptance rate, backup effect and failure impact. These experimental 

results are of great significance to further promote the research in network function virtualization and reliability 

optimization (Xi S, Xiaoqin Z, Yong Y, et al., 2022). 

6. Conclusion 

This paper addresses the reliability issue in traditional SFC deployment algorithms by studying a reliable 

deployment algorithm based on deep reinforcement learning. Experimental results demonstrate that the proposed 

algorithm effectively improves the reliability and performance of SFCs, thus having significant practical 

implications for network service deployment. Future research can further explore improvements and extensions 

to SFC reliable deployment algorithms. Additional factors and constraints, such as network topology changes 

and link failures, can be considered to comprehensively address challenges in practical deployments. 

Additionally, comparisons and integrations with other optimization algorithms can be conducted to further 

enhance the reliability and performance of SFCs. In summary, this research provides a new approach to reliable 

SFC deployment, achieving positive results in improving network service quality. We believe that through 

continued efforts and further research, SFC reliable deployment algorithms will offer broader prospects for the 

development and innovation of network technologies. 
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