

INNOVATION IN SCIENCE AND TECHNOLOGY

ISSN 2788-7030

NOV. 2025 VOL. 4, NO. 10

CONTENTS

The CTP and MELD Scores: Both Are Used for the Prediction of Mortality for the Patients with Decompensated Liver Cirrhosis	1-7
Haradhan Kumar Mohajan	
“Capital Injection + Post-Investment Empowerment”: The Dual Engines of Fintech Industry Development	8-14
Zhile Tan	
The Application Boundaries and Risk Management of AI in Financial Transactions: An Empirical Study	15-21
Jun Xin	
Construction and Efficacy Evaluation of an Intelligent Response System for Chemical Production Customer Audits Based on Knowledge Graphs	22-28
Xinshun Liu	
The Role of Cultural and Ecological Ethics in Shaping Green Innovation in China’s Tea Industry	29-38
Meilin Zhou	
Theoretical Modeling of Gene Regulatory Networks in Non-Model Organisms	39-49
Miguel Duarte	

The CTP and MELD Scores: Both Are Used for the Prediction of Mortality for the Patients with Decompensated Liver Cirrhosis

Haradhan Kumar Mohajan¹

¹ Associate Professor, Department of Mathematics, Premier University, Chittagong, Bangladesh

Correspondence: Haradhan Kumar Mohajan, Associate Professor, Department of Mathematics, Premier University, Chittagong, Bangladesh.

doi:10.63593/IST.2788-7030.2025.11.001

Abstract

The Child-Turcotte-Pugh (CTP) score (range: 5-15) and the Model for End Stage Liver Disease (MELD) score (range: 6-40) have been used for predicting the survival of liver cirrhosis patients. Both scores are general indicators of the severity of liver failure in patients with end-stage liver disease, and have been validated for short- and long- term survival in cirrhosis. The liver cirrhosis is the development of hepatic fibrosis and regenerative nodules as a result of chronic liver injury that may lead to portal hypertension and end-stage liver diseases, such as chronic viral hepatitis, cirrhosis, hepatocellular carcinoma (HCC), and liver failure. The aim of this study is to evaluate and compare the aspects of CTP classification and MELD scores for predicting the severity of the cirrhosis to the liver transplantation patients.

Keywords: CTP score, MELD score, decompensated cirrhosis, survival

1. Introduction

The Child-Turcotte-Pugh (CTP) score is developed in 1964 by American surgeon and portal hypertension expert Charles Gardner Child (1908-1991), and American liver transplant surgeon Jeremiah G. Turcotte; and modified it in 1973 by British surgeon R. N. H. Pugh and her coauthors (Pugh et al., 1973). In 1999, the Model for End Stage Liver Disease (MELD) score is originally developed at the Mayo Clinic of the USA through the effort of a group of researchers lead by Dr. Patrick Kamath, professor of gastroenterology and hepatology (Kamath et al., 2001). Later in 2000, it is refined and modified by American hepatologist Michael Malinchoc (Malinchoc et al., 2000).

The MELD score is based on objectively measured and widely available laboratory tests, compared with the CTP score (Mohajan, 2024u). Calculation of CTP score is easier but that of MELD score needs calculator or internet. The MELD score compared with the CTP score provides the mean values to measure liver disease severity more objectively and more accurately (Wiesner et al., 2001). Although the prediction models use mathematical calculation, the variables are found from laboratory tests, and are based on multivariable analyses have limitations of precision and reproducibility due to clinical and methodological reasons (Pagliaro, 2002).

2. Literature Review

In any type of research, literature review is an introductory section, where works of previous researchers are included (Polit & Hungler, 2013). It is a secondary source and does not report a new or an original experimental work (Gibbs, 2008). In qualitative research, literature review helps novice researchers to understand the subject, and it serves as an indicator of the subject that has been carried out before. It also assists all researchers to improve research questions and to move forward energetically in the current research (Creswell, 2007). Ramesh Kumar Chaurasia and his coworkers have compared the survival predictive values of MELD and CTP scoring systems in hospitalized patients of decompensated cirrhosis and other associated factors. They have found that MELD score is superior to CTP score in predicting survival at the time of discharge in hospitalized patients with decompensated

cirrhosis (Chaurasia et al., 2013).

Evangelos Cholongitas and his coauthors have studied the accuracy of MELD score versus CTP score in non-transplant settings. They think that both models for end-stage liver disease need further evaluation (Cholongitas et al., 2005). Samiullah Shaikh and his coauthors have compared the predictive value of MELD and CTP scores in patients with decompensated cirrhosis of liver. In their study the MELD score was not found to be superior to CTP score for short-term prognostication of patients with cirrhosis (Shaikh et al., 2010). Ashok Kumar and his coauthors have observed the scores of the MELD and CTP on in-patients of cirrhosis, and have predicted the outcome of patient according to both scores. They have noticed that the CTP score offers a clear advantage in predicting mortality than the MELD score (Kumar et al., 2018).

Kazim Abbas Virk and his coauthors have studied on the number of patients with acute variceal hemorrhage (AVH) on the MELD and CTP scores of each patient. On their study they have found that the MELD score is better in its discriminative ability and more accurate in predicting six weeks mortality in patients with AVH than CTP scores (Virk et al., 2021). Daniela Benedeto-Stojanov and her coauthors have shown that in cirrhotic patients the MELD score is an excellent survival predictor at least as well as the CTP score. Increase in both scores is associated with decrease in residual liver function (Benedeto-Stojanov et al., 2009).

Ying Peng and her coworkers have studied the CTP and MELD scores confidently, and have realized that these have similar prognostic values in most of the cases, and their benefits might be heterogeneous in some specific conditions. These scores have been widely used for the assessment of prognosis in liver cirrhosis (Peng et al., 2016). Koffi Alain Attia and his coworkers have compared the performance of the CPT and MELD scores in predicting survival of a retrospective cohort of 172 Black African patients with cirrhosis on a short- and mid- term basis. In their study they have found that both models show same prognostic significance (Attia et al., 2008).

3. Research Methodology of the Study

Research is a hard-working search, scholarly inquiry, and investigation that aims for the discovery of new facts and findings (Adams et al., 2007). Methodology is a system of explicit rules and procedures in which the research is based, and against which claims of knowledge are evaluated (Ojo, 2003). It provides the research design and analysis procedures to perform a good research (Hallberg, 2006). Research methodology is the procedure to accomplish a research in a systematic and process oriented way that provides a guideline to the researchers to investigate a problem (Abbasi, 2015). To prepare this article, I have used secondary data that are collected from both published and unpublished data sources (Mohajan, 2017, 2018, 2020). The data are collected from various sources, such as websites, national and international journals and e-journals, books and handbooks of famous authors, internet, etc. (Mohajan, 2024k-p; Mohajan & Mohajan, 2023a-e, 2024).

4. Objective of the Study

Both the CTP and the MELD scores are used as general indicators of the severity of liver failure in patients with end-stage liver disease (Mohajan, 2024q,t). The CTP scores are calculated using levels of prothrombin time, serum albumin, serum total bilirubin, and clinical ascites and encephalopathy findings. The severity of this disease is classified as class A (score 5-6), class B (score 7-9), and class C (score 10-15) (Hong et al., 2011). The MELD is a scoring system that provides the severity of the end-stage liver disease when the liver is almost completely damaged due to liver cirrhosis, liver failure, and hepatocellular carcinoma (HCC). It is assessed using three individual factors that affect the liver transplant prognosis: serum total bilirubin, serum creatinine, and the prothrombin time-international normalized ratio (PT-INR) (Mohajan, 2024c,s). Main objective of this article is to investigate the usefulness of predicting the CTP and the MELD scores of the patients who are waiting for the liver transplantation. Other minor objectives of the study are as follows:

- to highlight on liver function and liver transplantation,
- to focus on the CTP and the MELD scores, and
- to discuss their similarities and differences.

5. Overview of Liver

The liver is the largest solid internal visceral vital organ of the body that is a wedge or cone shaped. In an adult human it weighs between 1.5 and 2 kg (Mohajan, 2024a,d,f). It is the powerhouse of the body for metabolism and a center for numerous physiological processes. It is an essential organ of human to sustain life. In a healthy liver blood flows without or minimal resistance (Mohajan, 2024b,e,g). It accomplishes many complex functions of the body. The functions of liver are metabolism of carbohydrates, proteins and fat; storage of glycogen, vitamins (e.g., A, D, E, C), minerals (e.g., iron and copper); detoxification of drugs and toxins; excretion of bile and urea; reservoir of blood; filtration of bacteria, degradation of endotoxins and lactate metabolism; immunological functions with synthesis of immunoglobulins and phagocytic action by Kupffer cells; and haemopoiesis in the fetus (Katawala, 2024; Mohajan, 2024h,i,j). It is the only organ in the body that can regenerate itself. During the repair process,

scar tissue (fibrosis) may develop. Over time, the scar tissue increases and the large areas of the liver are surrounded by scar tissue; this is called liver cirrhosis (Alamri, 2018).

6. Overview of Liver Transplantation

Liver transplantation (LT) is a major surgical procedure for the patients of end-stage liver diseases. It is a life-saving treatment option of a diseased liver through the replacement with a healthy liver from a deceased donor or a portion of a healthy liver from a living donor (Lucas, 2021). At present liver resection is practicing worldwide widely to minimize morbidity and reduce mortality (Sumadewi, 2023). In 1955, Stuart Welch performed a heterotopic LT in the canine species. The first attempted human LT was performed in 1963 in the world by American physician, researcher, and expert on organ transplants Thomas Earl Starzl (1926-2017) on a three years old boy with biliary atresia who underwent LT, but he died due to coagulation disorder and uncontrolled bleeding (Starzl et al., 1963). The LT has modernized in the field of liver disease that creates a modern era in medical science. At present the treatment of liver disease has improved substantially (Mohajan, 2024r). Also the new immunosuppression and better supportive therapies are enabling sicker and higher-risk patients to be eligible for and survive to receive LT (Gotthardt et al., 2014). In 2021, there were about 34,694 LTs performed globally that is an increase of 6.5% from 2020 and a 20% increase from 2015 (Terrault et al., 2023).

7. CTP Score

The first version of Child-Turcotte score has two continuous variables, such as bilirubin and albumin, and three discrete quantitative variables, such as ascites, encephalopathy and nutritional status (Mohajan, 2024u). American surgeon and portal hypertension expert Charles Gardner Child (1908-1991) and American surgeon Jeremiah G. Turcotte (1933-2020) have developed it in 1964 (Child & Turcotte, 1964). Later it is modified by British surgeon R. N. H. Pugh through the substitution of the normalized ratio (INR) (prothrombin time) for nutritional status (Pugh et al., 1973). These five variables and their respective cut-off values are arranged to classify Child-Pugh score into three distinct groups: patients with score 5-6 were named as CTP class A that is well-compensated, with 7-9 as class B that is significant functional compromise, and with 10-15 as class C that is decompensated (Reuben, 2002). The CTP classes B and C are associated with cirrhosis-related complications, such as ascites, hepatic hydrothorax, variceal bleeding, and encephalopathy (Franco et al., 1990).

8. MELD Score

The MELD score is introduced as a tool for predicting mortality risk and to assess the severity of the disease in patients with liver cirrhosis, as well as to determine organ allocation priorities (Yousfi et al., 2001). It was originally developed at the Mayo Clinic of the USA with the attempts of a group of researchers lead by Dr. Patrick Kamath, professor of gastroenterology and hepatology (Malinchoc et al., 2000). It has three objective variables: serum bilirubin, serum creatinine, and institutional normalized ratio (INR) (Singal & Kamath, 2013). The two quantitative variables; bilirubin and INR are related to the liver dysfunction, and the third, creatinine is related to the renal dysfunction (Mohajan, 2024s). Therefore, these are clinically well founded, and their predictive efficiency has a sound prior probability for MELD (Arroyo et al., 1991). The MELD score is defined by American hepatologist Michael Malinchoc, and is calculated according to the following formula (Malinchoc, et al., 2000):

$$\text{MELD} = 3.78 \times \ln(\text{serum bilirubin (mg/dL)}) + 11.2 \times \ln(\text{INR}) + 9.57 \times \ln(\text{serum creatinine (mg/dL)}) + 6.43 \quad (1)$$

The MELD scoring has been applied as a new liver organ allocation system for LT since 2002 in the USA and since 2006 in Europe, and at present it is using worldwide (Aiello et al., 2017).

9. CTP vs. MELD Scores

It is still not clear whether MELD is better than CTP score for predicting survival in patients with CLD outside of LT waiting lists (Heuman et al., 2005). Both bilirubin and prothrombin time are common in both scores. According to the CTP, the patients are classified into A, B and C, but MELD has no classification (Huo et al., 2006). The CTP classification uses discrete cut-offs to move from one to the next class through the influence of five variables, and MELD uses a continuous measurement of the three variables, implying a better discriminating power. The MELD score ranges from 8 to 40 and range of CTP score is from 5 to 15 (Pagliaro, 2002).

The MELD score does not include hepatic encephalopathy and ascites, instead it uses serum creatinine, but CTP does not use it, instead it uses ascites and encephalopathy and both are subjective, and these affect quality of life of patients (Shaikh et al., 2010). Therefore, these patients need to be allocated separately for LT if MELD is used to prioritize organ allocation (Said et al., 2004). Most of the researchers preferred MELD over CTP because it includes objective variables, lack of ceiling effect and similarity of its results in various centers and in particular inclusion of serum creatinine which is regarded as an independent predictor of survival during the course of the disease. The MELD score is obtained by using prospective and methodologically accurate methods; whereas the CTP classification is created on intuitive and empirical basis (Pagliaro, 2002).

Both CTP and MELD scores are predictive of waitlist mortality. However, the MELD score appears to be more

objective than the CTP because the version of the score that is currently used contains only three objective laboratory parameters (Cholongitas et al., 2005). The history of MELD score has been similar to that of CTP score, and both are used as a justice system to allocate donors for LT. However, the predictive accuracy of the MELD score in patients who have TIPS, variceal bleeding and chronic liver disease is not significantly superior to the CTP score (Schepke et al., 2003).

10. Conclusions

In this study, I have provided an overview regarding the comparison of CTP and MELD scores for the assessment of prognosis in liver cirrhosis. Both of them have some similar prognostic behaviors. Some researchers have found that the MELD score is significantly superior to CTP score in predicting survival in hospitalized patients with decompensated cirrhosis in addition to usefulness in predicting short-term and medium-term survival in patients with decompensated cirrhosis. On the other hand, some researchers eager to keep the CTP score for individual assessment of liver disease in daily clinical practices. But I are not clear whether MELD is better than CTP score for predicting survival in patients with chronic liver disease outside of liver transplant waiting lists. Also both of the scores have some drawbacks.

References

Abbasi, M. I. (2015). Marxist Feminism in Alice Walker's Novels: The Temple of My Familiar, Meridian and The Color Purple. PhD Thesis, National University of Modern Languages, Islamabad.

Adams, J., et al. (2007). *Research Methods for Graduate Business and Social Science Students*. Sage Publications Ltd., London.

Aiello, F. I., et al. (2017). Model for End-Stage Liver Disease (MELD) Score and Liver Transplant: Benefits and Concerns. *AME Medical Journal*, 2, 168.

Alamri, Z. Z. (2018). The Role of Liver in Metabolism: An Updated Review with Physiological Emphasis. *International Journal of Basic & Clinical Pharmacology*, 7(11), 2271-2276.

Arroyo, V., et al. (1991). Ascites, Renal Failure and Electrolyte Disorders in Cirrhosis: Pathogenesis, Diagnosis and Treatment. In: McIntyre N, Benhamou JP, Bircher J, Rizzetto M, Rode's J, (Eds.), *Oxford Textbook of Clinical Hepatology*, pp. 429-470.

Attia, K. A. et al. (2008). Child-Pugh-Turcott versus Meld Score for Predicting Survival in a Retrospective Cohort of Black African Cirrhotic Patients. *World Journal of Gastroenterology*, 14(2), 286-291.

Benedeto-Stojanov, D., et al. (2009). The Model for the End-Stage Liver Disease and Child-Pugh Score in Predicting Prognosis in Patients with Liver Cirrhosis and Esophageal Variceal Bleeding. *Vojnosanitetski Pregled*, 66(9), 724-728.

Chaurasia, R. K., et al. (2013). Child-Turcotte-Pugh versus Model for End Stage Liver Disease Score for Predicting Survival in Hospitalized Patients with Decompensated Cirrhosis. *Journal of Nepal Health Research Council*, 11(23), 9-16.

Child, C., & Turcotte, J. (1964). The Liver and Portal Hypertension. In: Child, C. I. (Ed.), *Surgery and Portal Hypertension*, pp. 50-58. Philadelphia, USA: W. B. Saunders.

Cholongitas, E., et al. (2005). Systematic Review: The Model for End-Stage Liver Disease: Should It Replace Child-Pugh's Classification for Assessing Prognosis in Cirrhosis? *Alimentary Pharmacology & Therapeutics*, 22(11-12), 1079-1089.

Creswell, J. W. (2007). *Qualitative Inquiry and Research Design: Choosing Among Five Approaches*. Thousand Oaks, CA: Sage Publications.

Franco, D., et al. (1990). Resection of Hepatocellular Carcinomas. Results in 72 European Patients with Cirrhosis. *Gastroenterology*, 98(3), 733-738.

Gibbs, G. (2008). *Analysing Qualitative Data*. London: Sage Publications.

Gotthardt, D. N., et al. (2014). Current Strategies for Immunosuppression Following Liver Transplantation. *Langenbeck's Archives of Surgery*, 399(8), 981-988.

Hallberg, L. (2006). The "Core-Category" of Grounded Theory: Making Constant Comparisons. *International Journal of Qualitative Studies on Health and Well-Being*, 1(3), 141-148.

Heuman, D. M., et al. (2005). Rationally Derived Child-Turcotte-Pugh (CTP) Subclasses Permit Accurate Stratification of Near-Term Risk in Cirrhotics Patients Referred for Liver Transplantation. *Gastroenterology*, 128, A-734.

Hong, S.-H., et al. (2011). Comparison of the Child-Turcotte-Pugh Classification and the Model for End-stage

Liver Disease Score as Predictors of the Severity of the Systemic Inflammatory Response in Patients Undergoing Living-Donor Liver Transplantation. *Journal of Korean Medical Science*, 26(10), 1333-1338.

Huo, T. I., et al. (2006). Proposal of Modified Child-Turcotte-Pugh Scoring System and Comparison with the Model for End-Stage Liver Disease for Outcome Prediction in Patients with Cirrhosis. *Liver Transplantation*, 12(1), 65-71.

Kamath, P. S., et al. (2001). A Model to Predict Survival in Patients with End-Stage Liver Disease. *Hepatology*, 33(2), 464-470.

Katawala, T. (2024). Liver Physiology. *Update in Anaesthesia*, 66-68.

Kumar, A., et al. (2018). Child-Pugh Still Predicts Mortality Better Than MELD: A Comparative Study in a Tertiary Care Hospital in the Periphery of Karachi. *Annals Abbasi Shaheed Hospital & Karachi Medical & Dental College*, 23(3), 130-135.

Lucas, A. R. (2021). Liver Transplantation. *Journal of Transplantation Technologies & Research*, 11(3), e104.

Malinchoc, M., et al. (2000). A Model to Predict Poor Survival in Patients Undergoing Transjugular Intrahepatic Portosystemic Shunts. *Hepatology*, 31(4), 864-871.

Mohajan, H. K. (2017). Two Criteria for Good Measurements in Research: Validity and Reliability. *Annals of Spiru Haret University Economic Series*, 17(3), 58-82.

Mohajan, H. K. (2018). Aspects of Mathematical Economics, Social Choice and Game Theory. PhD Dissertation, Jamal Nazrul Islam Research Centre for Mathematical and Physical Sciences (JNIRCMPS), University of Chittagong, Chittagong, Bangladesh.

Mohajan, H. K. (2020). Quantitative Research: A Successful Investigation in Natural and Social Sciences. *Journal of Economic Development, Environment and People*, 9(4), 50-79.

Mohajan, H. K. (2024a). Anatomy of Human Liver: A Theoretical Study. Unpublished Manuscript.

Mohajan, H. K. (2024b). A Study on Functions of Liver to Sustain a Healthy Liver. Unpublished Manuscript.

Mohajan, H. K. (2024c). Liver Cirrhosis: Causes, Severity, and Management Strategy. Unpublished Manuscript.

Mohajan, H. K. (2024d). Management Strategies of Fatal Liver Infection Due to Hepatitis C Virus (HCV). Unpublished Manuscript.

Mohajan, H. K. (2024e). Transmission, Diagnosis, and Treatment of Acute and Chronic Hepatitis E. Unpublished Manuscript.

Mohajan, H. K. (2024f). Alcoholic Liver Disease: Diagnosis and Treatment Strategies. Unpublished Manuscript.

Mohajan, H. K. (2024g). Management of Acute and Chronic Hepatitis B and C Viral Infections. Unpublished Manuscript.

Mohajan, H. K. (2024h). Hepatitis A and Hepatitis E Viruses can Develop Acute Viral Hepatitis: Prevention is the Best Policy. Unpublished Manuscript.

Mohajan, H. K. (2024i). Epidemiological Investigation of Hepatitis F Viruses (HFV). Unpublished Manuscript.

Mohajan, H. K. (2024j). Alcoholic Hepatitis: Diagnosis and Management Procedures. Unpublished Manuscript.

Mohajan, H. K. (2024k). Clinical Practice, and Diagnosis and Treatment Strategies of Chronic Hepatitis D Virus (HDV). Unpublished Manuscript.

Mohajan, H. K. (2024l). Hepatitis A Virus (HAV) Infection: A Prevention Strategy through Hygienic Maintenance and Vaccination. Unpublished Manuscript.

Mohajan, H. K. (2024m). Prevention of Hepatitis B Virus (HBV) is Essential to Avoid Chronic Liver Disease. Unpublished Manuscript.

Mohajan, H. K. (2024n). Prevention and Treatment Strategies of Viral Hepatitis. Unpublished Manuscript.

Mohajan, H. K. (2024o). Hepatitis G Viruses (HGV): A Study on Prevalence, Transmission, and Co-Infection. Unpublished Manuscript.

Mohajan, H. K. (2024p). Hepatitis D and E Viruses Cause Liver Damage: Management and Prevention are the Best Policies of Elimination These. Unpublished Manuscript.

Mohajan, H. K. (2024q). Alcoholic Liver Cirrhosis: A Chronic Liver Failure Due to Alcohol Abuse. Unpublished Manuscript.

Mohajan, H. K. (2024r). Liver Transplantation: A Treatment Option for Survival in End-Stage Liver Disease. Unpublished Manuscript.

Mohajan, H. K. (2024s). The Model of End-Stage Liver Disease (MELD) Score Predicts the Survival Period of Patients with Liver Failure. Unpublished Manuscript.

Mohajan, H. K. (2024t). Liver Diseases: Epidemiology, Prevention, and Management Strategy. Unpublished Manuscript.

Mohajan, H. K. (2024u). Child-Turcotte-Pugh (CTP) Score: A Predicting Model for Liver Failure Patients Who Wait for Liver Transplantation. Unpublished Manuscript.

Mohajan, D., & Mohajan, H. K. (2023a). Body Mass Index (BMI) is a Popular Anthropometric Tool to Measure Obesity among Adults. *Journal of Innovations in Medical Research*, 2(4), 25-33.

Mohajan, D., & Mohajan, H. K. (2023b). Long-Term Regular Exercise Increases $\dot{V}O_{2\text{max}}$ for Cardiorespiratory Fitness. *Innovation in Science and Technology*, 2(2), 38-43.

Mohajan, D., & Mohajan, H. K. (2023c). A Study on Body Fat Percentage for Physical Fitness and Prevention of Obesity: A Two Compartment Model. *Journal of Innovations in Medical Research*, 2(4), 1-10.

Mohajan, D., & Mohajan, H. K. (2023d). Obesity and Its Related Diseases: A New Escalating Alarming in Global Health. *Journal of Innovations in Medical Research*, 2(3), 12-23.

Mohajan, D., & Mohajan, H. K. (2023e). Basic Concepts of Diabetics Mellitus for the Welfare of General Patients. *Studies in Social Science & Humanities*, 2(6), 23-31.

Mohajan, D., & Mohajan, H. K. (2024). Visceral Fat Increases Cardiometabolic Risk Factors among Type 2 Diabetes Patients. *Innovation in Science and Technology*, 3(5), 26-30.

Ojo, S. O. (2003). Productivity and Technical Efficiency of Poultry Egg Production in Nigeria. *International Journal of Poultry Science*, 2(6), 459-464.

Pagliaro, L. (2002). MELD: The End of Child-Pugh Classification? *Journal of Hepatology*, 36(1), 141-142.

Peng, Y., et al. (2016). Child-Pugh versus MELD Score for the Assessment of Prognosis in Liver Cirrhosis: A Systematic Review and Meta-Analysis of Observational Studies. *Medicine*, 95(8), e2877.

Polit, D. F., & Hungler, B. P. (2013). *Essentials of Nursing Research: Methods, Appraisal, and Utilization* (8th Ed.). Philadelphia: Wolters Kluwer/Lippincott Williams and Wilkins.

Pugh, R. N. et al. (1973). Transection of the Oesophagus for Bleeding Oesophageal Varices. *British Journal of Surgery*, 60(8), 646-649.

Reuben, A. (2002). Child Comes of Age. *Hepatology*, 35(1), 244-245.

Said, A., et al. (2004). Model for End Stage Liver Disease Score Predicts Mortality across a Broad Spectrum of Liver Disease. *Journal of Hepatology*, 40(6), 897-903.

Schepke, M., et al. (2003). Comparison of MELD, Child-Pugh, and Emory Model for the Prediction of Survival in Patients Undergoing Transjugular Intrahepatic Portosystemic Shunting. *American Journal of Gastroenterology*, 98(5), 1167-1174.

Shaikh, S., et al. (2010). MELD Era: Is This Time to Replace the Original Child-Pugh Score in Patients with Decompensated Cirrhosis of Liver. *Journal of the College of Physicians and Surgeons Pakistan*, 20(7), 432-435.

Singal, A. K., & Kamath, P. S. (2013). Model for End-stage Liver Disease. *Journal of Clinical and Experimental Hepatology*, 3(1), 50-60.

Starzl, T. E., et al. (1963). Homotransplantation of the Liver in Humans. *Surgery, Gynecology and Obstetrics*, 117, 659-676.

Sumadewi, K. T. (2023). Embryology, Anatomy and Physiology of the Liver: Review. *Indian Journal of Clinical Anatomy and Physiology*, 10(4), 138-144.

Terrault, N. A., et al. (2023). Liver Transplantation 2023: Status Report, Current and Future Challenges. *Clinical Gastroenterology and Hepatology*, 21(8), 2150-2166.

Virk, K. A., et al. (2021). Child-Turcotte-Pugh and Model for End-stage Liver Disease Scores, Predictability for Mortality in Acute Variceal Hemorrhage in Terms of Accuracy. *Life and Science*, 2(1), 22-29.

Wiesner, R. H., et al. (2001). MELD and PELD: Application of Survival Models to Liver Allocation. *Liver Transplantation*, 7(7), 567-580.

Yousfi, M. M., et al. (2001). Dynamic Changes in MELD Score is Important in Predicting Mortality for Patients Awaiting Liver Transplantation (LTx). *Hepatology*, 34, 254A.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (<http://creativecommons.org/licenses/by/4.0/>).

“Capital Injection + Post-Investment Empowerment”: The Dual Engines of Fintech Industry Development

Zhile Tan¹

¹ Beijing Jingwei Yuntu Technology Co., Ltd., Beijing 102488, China

Correspondence: Zhile Tan, Beijing Jingwei Yuntu Technology Co., Ltd., Beijing 102488, China.

doi:10.63593/IST.2788-7030.2025.11.002

Abstract

Despite the rapid expansion of financing scale in the fintech industry, only 32% of enterprises can break through the growth bottleneck. The core contradiction lies in the disconnection between capital injection and post-investment empowerment. Based on a sample of 327 global fintech companies from 2019 to 2023, this paper constructs a coupling coordination model of “capital injection intensity (CD) – post-investment empowerment depth (ED)” and employs methods such as two-way fixed effects and threshold regression to explore the impact mechanism of the dual engines on enterprise development efficiency. The results show that: (1) A 0.1 increase in the coupling coordination degree of the dual engines significantly enhances the enterprise revenue growth rate by 0.85 percentage points and increases the number of patent applications by 0.56 items, an effect far exceeding that of single capital injection. (2) There is a significant threshold effect. When the capital injection intensity $CD \geq 0.35$ and the post-investment empowerment depth $ED \geq 0.42$, the marginal effect of the dual engines on the revenue growth rate jumps from 0.52 percentage points to 0.98 percentage points. After breaking through the threshold, the two form a “complementary and synergistic” pattern. (3) The synergistic effect exhibits heterogeneity in fields and regions. Blockchain companies are most sensitive to the dual engines, while payment companies are the least sensitive. North American companies have significantly higher collaborative efficiency than Asian companies. This study quantifies the critical standards for the synergy of “capital - empowerment” for the first time, providing theoretical support and practical guidelines for equity investment institutions to optimize resource allocation, fintech companies to accurately connect with elements, and regulatory authorities to formulate differentiated policies.

Keywords: fintech, capital injection, post-investment empowerment, dual engine synergy, coupling coordination model, threshold effect, enterprise development efficiency, heterogeneity analysis, threshold regression, blockchain

1. Research Background and Problem Statement

1.1 The Scale-Quality Imbalance Dilemma of the Fintech Industry

The deep integration of digital economy and financial innovation has propelled the fintech industry to become a core track for global capital deployment. According to Statista data, the global fintech financing amount grew at a compound annual growth rate of 18.7% from 2018 to 2023, with the scale exceeding 8 billion US dollars in 2023 alone. The total number of enterprises reached 128,000, an increase of 120% compared to 2018. The industry has transitioned from its nascent stage to a period of scaled growth. However, behind the scale expansion, the contradiction of “quantity-quality imbalance” is prominent. The World Economic Forum (WEF) report in 2024 showed that only 32% of enterprises in the growth stage could achieve a revenue growth rate of $\geq 20\%$ for two consecutive years and turn a profit. The capital conversion efficiency of the remaining enterprises dropped from 0.52 US dollars per US dollar in 2018 to 0.35 US dollars per US dollar in 2023, with an average return on equity (ROE) of only 8.2%, far below the 15.6% of leading mature enterprises. This imbalance is

particularly evident in sub-sectors. The research success rate of blockchain companies is only 22%, the customer retention rate of payment companies has declined from 85% to 80% (Luo, M., Du, B., Zhang, W., Song, T., Li, K., Zhu, H., ... & Wen, H., 2023), and the user conversion rate of robo-advisory is only 3.2%. The core root of these issues lies in the systemic disconnection between “capital injection – post-investment empowerment.” Capital only addresses the funding gap but fails to enhance core capabilities, while empowerment can compensate for shortcomings but lacks capital support, ultimately leading to a situation where the industry has “quantity but no quality.”

1.2 Core Gaps in Existing Research

Existing research on the fintech industry exhibits a fragmented characteristic of “focusing on capital but neglecting empowerment.” Bibliometric analysis shows that 68% of studies focus on the impact of capital on enterprise scale, while only 19% mention post-investment empowerment, mostly treating it as an ancillary variable. 73% of capital measurements ignore differences in enterprise asset scales, and the quantification of empowerment mostly adopts a binary variable of “whether empowerment is obtained,” failing to capture in-depth characteristics such as service dimensions and duration. In practice, PwC’s 2024 global VC/PE post-investment management survey revealed that 67% of investment institutions are unclear about the optimal allocation ratio between capital and empowerment, and 43% of fintech companies believe that the capital and empowerment they receive are mismatched. Existing research has neither clarified the threshold standards for the synergy between the two nor analyzed the heterogeneous demands of sub-sectors and regions, resulting in a lack of actionable guidelines.

Table 1.

Dimension	Specific Indicator	Proportion
Research Focus	Impact of Capital on Firm Size	68%
Research Focus	Mention of Post-Investment Empowerment	19%
Capital Estimation	Ignoring Differences in Asset Scale	73%
Empowerment Quantification	Use of Binary Variables	Mainstream
Practice Survey	Institutions Unclear about Optimal Allocation	67%
Practice Survey	Firms Believe Capital Empowerment is Mismatched	43%

1.3 Research Questions

Based on the above practical dilemmas and theoretical gaps, this study focuses on the dual-engine logic of “capital injection + post-investment empowerment” and addresses three core questions: How to scientifically define the core dimensions of capital injection intensity (CD) and post-investment empowerment depth (ED), construct a coupling coordination model to reveal the path of synergistic effects; whether there is a threshold effect of the dual-engine synergy on the growth and innovation capabilities of fintech enterprises, and if so, what are the critical values of CD and ED; what are the heterogeneous effects and underlying causes of the dual-engine synergy in sub-sectors (blockchain, payment, robo-advisory) and regions (North America, Asia), and how to develop differentiated practice strategies accordingly, ultimately providing theoretical support and practical guidance for the high-quality development of the industry.

2. Theoretical Framework and Dual Engine Synergy Model Construction

2.1 Core Theoretical Support

The theoretical logic of the dual engine of “capital injection – post-investment empowerment” in the fintech industry relies on the integration of the resource-based theory and the dynamic capabilities theory, which respectively address the core propositions of “resource acquisition” and “resource transformation,” forming a complete value creation chain. The resource-based theory posits that a firm’s sustained competitive advantage stems from resources that are scarce and difficult to imitate. For fintech companies, capital is not only a production factor but also a key vehicle for breaking through industry barriers. It can provide support for equipment and talent for the development of blockchain algorithms and robo-advisory models, crossing the sunk cost threshold of technological research and development, and cover market entry costs such as payment licenses and scene docking, reducing industry entry barriers. However, this theory only focuses on “resource acquisition” and cannot explain the inefficiency caused by insufficient transformation capabilities despite adequate capital, which needs to be supplemented by the dynamic capabilities theory.

The dynamic capabilities theory emphasizes that firms need to integrate resources to adapt to environmental

changes. Given the rapid technological iteration and dynamic regulatory policy adjustments in the fintech industry, possessing capital alone cannot form a sustained advantage. Technological empowerment can help enterprises transform capital investment into core technological achievements to cope with rapid technological upgrades. Compliance empowerment can reduce resource losses caused by policy changes and enhance firms' regulatory adaptability. Scene empowerment can expand the application boundaries of capital, transforming technological achievements such as algorithms and models into actual revenue. Thus, the resource-based theory and the dynamic capabilities theory complement each other. Capital injection addresses the "resource acquisition" issue, while post-investment empowerment addresses the "resource transformation" issue. Together, they form a complete theoretical chain of "capital acquisition – empowerment transformation – efficiency enhancement," supporting the dual-engine logic.

2.2 Core Concept Definition of the Dual Engine

Capital injection intensity (CD) should avoid the bias of using absolute values or financing rounds in existing research. Its essence is the matching degree between the scale of capital injection and the enterprise asset scale. The core indicator is set as "(annual equity investment total + annual debt financing amount) / enterprise year-end total assets," with a value range of 0-1. This design covers the common "equity + debt" hybrid financing model in fintech companies, avoiding the underestimation of actual capital scale by a single equity indicator. It also achieves cross-enterprise comparability through asset scale, accurately reflecting the relative capital strength of different-sized enterprises. For example, the same amount of financing has a more significant support effect on small-sized enterprises than on large enterprises, which cannot be reflected by absolute value indicators.

Post-investment empowerment depth (ED) needs to capture both "comprehensiveness" and "continuity." It is defined as the product of "service dimension coverage and service duration ratio," with a value range of 0-1. The service dimension focuses on four core areas: technology, compliance, scene, and management, which stem from the core needs of fintech companies. Technological empowerment supports research and development, compliance empowerment deals with regulation, scene empowerment enables implementation, and management empowerment optimizes operations. Coverage is measured by "actual number of service dimensions / 4," reflecting the comprehensiveness of empowerment. The service duration ratio is measured by "annual post-investment service total duration / 12 months," (Zhang, L., Wang, L., Huang, Y., & Chen, H., 2019) emphasizing the continuity of empowerment. There is an essential difference between one-time services and long-term on-site guidance in terms of resource transformation, and the duration ratio can effectively distinguish this difference.

2.3 CD-ED Coupling Coordination Degree Model

To quantify the synergy between the dual engines, the CD-ED coupling coordination degree model is introduced based on the "coupling" theory in physics, and the precise measurement is realized in three steps. The first step is to determine the weights of CD and ED using the entropy method. Based on the information entropy of variables reflecting their contributions, the lower the information entropy and the higher the dispersion degree, the greater the contribution, avoiding subjective weighting bias and ensuring the objectivity of the weights. The second step is to calculate the coupling degree (C), with the formula being $\sqrt{(CD \times ED) / (\omega_1 \times CD + \omega_2 \times ED)^2}$, with a value range of 0-1, measuring the synergy between CD and ED. The higher the value, the stronger the interdependence and mutual promotion between the two, which can distinguish non-synergistic states such as capital surplus or insufficient empowerment. The third step is to calculate the coordination degree (D), introducing the "development level index T" ($T = \omega_1 \times CD + \omega_2 \times ED$), with the formula being $\sqrt{C \times T}$, with a value range of 0-1, avoiding the misjudgment of "low-level synergy." For example, when both capital and empowerment are insufficient, the coupling degree may be high, but the coordination degree can reflect the real synergy quality through the development level index. Finally, the synergy state is divided into three levels: low, medium, and high, according to the coordination degree, achieving comprehensive quantification of the synergy between the dual engines.

3. Research Design

3.1 Sample Selection and Data Sources

3.1.1 Sample Range Definition

This study selects 327 global fintech companies from 2019 to 2023 as research objects, covering three core tracks: payment (112 companies), blockchain (98 companies), and robo-advisory (117 companies). Samples must meet the criteria of having an existence period of no less than three years, excluding ST, near-bankruptcy, and companies with data missing rates exceeding 30%. Geographically, 145 companies from North America and 182 companies from Asia are included to compare the impact of different market environments. (He, Y., Wang, J., Li, K., Wang, Y., Sun, L., Yin, J., ... & Wang, X., 2025)

3.1.2 Data Acquisition Logic

For the core explanatory variables, capital injection intensity (CD) is calculated by integrating relevant items from enterprise financial reports and non-public information from industry databases. Post-investment empowerment depth (ED) is verified through cross-referencing enterprise interviews and institutional disclosures, collecting data on service dimension coverage and annual service duration. For the explained variables, revenue growth rate (GR) is derived from annual enterprise financial reports, and the number of patent applications (PA) is integrated from technical patent databases and enterprise research and development disclosures. For control variables, enterprise age is calculated based on the difference between registration information and the observation year, and the founder's education level is classified and coded based on publicly available information. Regulatory policy intensity is set as a dummy variable based on policy types.

3.2 Variable Definition and Measurement

3.2.1 Explained Variables: Dimensions of Enterprise Development Efficiency

The explained variables include dimensions of growth and innovation capabilities. The revenue growth rate (GR) is calculated as (current year's revenue - last year's revenue) / last year's revenue $\times 100\%$, avoiding interference from non-recurring gains and losses. The number of patent applications (PA) is the total number of invention patents and utility model patents for the year, avoiding the time lag caused by the patent authorization cycle.

3.2.2 Core Explanatory Variables: Quantitative Indicators of Dual Engine Synergy

The core explanatory variables include capital injection intensity (CD), post-investment empowerment depth (ED), and coupling coordination degree (D). CD is calculated as (annual equity investment total + annual debt financing amount) / enterprise year-end total assets (value range 0-1). ED is calculated as (actual number of service dimensions / 4) \times (annual post-investment service total duration / 12) (value range 0-1). D is calculated based on the previous coupling coordination model, comprehensively reflecting the synergy and development level of the dual engines.

3.2.3 Control Variables: Identification and Control of Interfering Factors

Control variables cover enterprise micro-characteristics and external environmental factors. Enterprise age is the observation year minus the enterprise establishment year, controlling the impact of development stage. Founder's education level (Edu) is set as a dummy variable (1 for bachelor's degree and above, 0 otherwise), controlling individual capability differences. Regulatory policy intensity (Reg) is set as a dummy variable (1 for regulatory tightening in the year, 0 otherwise), isolating the impact of policy environment shocks.

3.3 Empirical Methods and Model Specification

3.3.1 Benchmark Regression: Application of Two-Way Fixed Effects Model

The benchmark regression employs a two-way fixed effects model to control for individual and time heterogeneity. The model for growth capability is $GR_{it} = \alpha_0 + \alpha_1 D_{it} + \alpha_2 Age_{it} + \alpha_3 Edu_{it} + \alpha_4 Reg_{it} + \mu_i + \lambda_t + \varepsilon_{it}$, and the model for innovation capability is $PA_{it} = \beta_0 + \beta_1 D_{it} + \beta_2 Age_{it} + \beta_3 Edu_{it} + \beta_4 Reg_{it} + \mu_i + \lambda_t + \varepsilon_{it}$ (where i represents the enterprise, t represents the year, μ_i represents individual fixed effects, λ_t represents time fixed effects, and ε_{it} represents the random error term).

3.3.2 Threshold Effect Test: Design of Hansen Threshold Regression Model

The Hansen threshold regression model is used to identify the threshold effect of dual-engine synergy. The model with capital injection intensity (CD) as the threshold is specified as $GR_{it} = \gamma_0 + \gamma_1 D_{it} \times I(CD_{it} \leq \gamma) + \gamma_2 D_{it} \times I(CD_{it} > \gamma) + \gamma_3 X_{it} + \mu_i + \varepsilon_{it}$ (where γ is the threshold value (Shih, K., Deng, Z., Chen, X., Zhang, Y., & Zhang, L., 2025), $I(\cdot)$ is the indicator function, and X_{it} is the set of control variables). The optimal threshold value is determined by grid search, and the significance is tested by Bootstrap sampling 500 times. Similarly, a model with post-investment empowerment depth (ED) as the threshold is constructed.

3.3.3 Robustness Test: Multi-Dimensional Verification of Result Reliability

Robustness tests are designed from three dimensions: variable substitution, sample processing, and method replacement. Variable substitution replaces GR with net profit growth rate and PA with the number of patent authorizations. Sample processing uses the 1% percentile trimming method for CD, ED, and GR. Method replacement uses the random effects model instead of the two-way fixed effects model. The Hausman test is used to determine rationality, and the core coefficient signs and significance levels are compared to verify the reliability of the conclusions.

4. Empirical Results and Analysis

4.1 Descriptive Statistics and Correlation Analysis

4.1.1 Descriptive Statistics

This study conducts descriptive statistics on 1,635 observations from 327 fintech companies between 2019 and 2023. The distribution of key variables is as follows: the mean value of dual-engine coupling coordination D is 0.48, which falls within the moderate coordination range, with a standard deviation of 0.15 and a range of 0.12-0.89, indicating significant differences in coordination levels among companies; the mean capital injection intensity CD is 0.32, which is lower than the mean post-investment empowerment depth ED of 0.40, reflecting a tendency among some institutions to 'focus more on empowerment and less on capital.' Regarding enterprise development effectiveness, the mean revenue growth rate GR is 18.7%, with a standard deviation of 10.2% and a minimum of -5.3%; the mean number of patent applications PA is 5.2, with a standard deviation of 3.8, a maximum of 18, and a minimum of 0, all reflecting significant differentiation among companies; the mean company age (Age) is 5.8 years, concentrated between 3-12 years, which aligns with the selection criteria for growth-stage enterprises.

Table 2.

Variable	Mean	Standard Deviation	Minimum	Maximum
D	0.48	0.15	0.12	0.89
CD	0.32	—	—	—
ED	0.40	—	—	—
GR	18.7%	10.2%	-5.3%	—
PA	5.2	3.8	0	18
Age	5.8	—	3	12

4.1.2 Correlation Analysis

The Pearson correlation coefficient test shows that the coupling coordination degree D is significantly positively correlated with the revenue growth rate GR and the number of patent applications PA, with correlation coefficients of 0.52 and 0.41, respectively, both significant at the 1% significance level. There is no serious multicollinearity between capital injection intensity CD and post-investment empowerment depth ED (variance inflation factor $VIF < 2$). Among the control variables, the founder's education level Edu is positively correlated with GR and PA, with correlation coefficients of 0.28 and 0.23, respectively, both significant at the 1% significance level. Enterprise age (Age) is weakly negatively correlated with GR, with a correlation coefficient of -0.15, significant at the 5% significance level. Regulatory policy intensity Reg is negatively correlated with GR and PA, with correlation coefficients of -0.21 and -0.18 (Shih, K., Deng, Z., Chen, X., Zhang, Y., & Zhang, L., 2025), respectively, both significant at the 1% significance level, which is in line with theoretical expectations.

4.2 Benchmark Regression Results: Dual Engine Synergy Effect

4.2.1 Impact on Growth Capability (GR)

The results of the two-way fixed effects model show that the coupling coordination degree D has a significant positive impact on GR, with a coefficient of 8.5, a standard error of 1.2, and a t-value of 7.08, significant at the 1% significance level. This means that a 0.1 increase in D will increase GR by 0.85 percentage points, an effect significantly stronger than that of single capital injection (when only CD is included, the coefficient is 4.2, and GR increases by only 0.42 percentage points for every 0.1 increase in CD). Among the control variables, the enterprise age (Age) has a coefficient of -0.3, significant at the 5% significance level; the founder's education level (Edu) has a coefficient of 2.1, significant at the 1% significance level; and the regulatory policy intensity (Reg) has a coefficient of -1.5, significant at the 5% significance level. The model R^2 is 0.42.

4.2.2 Impact on Innovation Capability (PA)

The coupling coordination degree D has a significant positive impact on PA, with a coefficient of 5.6, a standard error of 2.1, and a t-value of 2.67, significant at the 5% significance level. This means that a 0.1 increase in D will increase PA by 0.56 items. Among the control variables, the founder's education level (Edu) has a coefficient of 1.3, significant at the 1% significance level; the enterprise age (Age) has a coefficient of 0.2, significant at the 5% significance level; and the regulatory policy intensity (Reg) has a coefficient of -1.2, significant at the 5% significance level. The model R^2 is 0.38.

4.3 Threshold Regression Results: Threshold Effect

Hansen threshold regression shows that the threshold value of capital injection intensity CD is 0.35, with an F-statistic of 28.7, significant at the 1% significance level; the threshold value of post-investment empowerment depth ED is 0.42, with an F-statistic of 25.3, also significant at the 1% significance level. When $CD \leq 0.35$, the marginal effect of D on GR is 0.52 percentage points per 0.1D, significant at the 5% significance level; when $CD > 0.35$, the marginal effect increases to 0.98 percentage points per 0.1D, significant at the 1% significance level, an increase of 88.5%. When $ED \leq 0.42$, the marginal effect of D on GR is 0.48 percentage points per 0.1D, significant at the 5% significance level; when $ED > 0.42$ (Feng, H., Dai, Y., & Gao, Y., 2025), the marginal effect increases to 1.03 percentage points per 0.1D, significant at the 1% significance level, an increase of 114.6%.

Table 3.

Threshold Variable	Threshold Value	F-Statistic	Significance Level	Increase
CD	0.35	28.7	5%	88.5%
CD	0.35	28.7	1%	88.5%
ED	0.42	25.3	5%	114.6%
ED	0.42	25.3	1%	114.6%

4.4 Heterogeneity Analysis

4.4.1 Heterogeneity in Sub-Sectors

Among different sub-sectors of fintech, the synergy effect of the dual engines varies significantly. In the blockchain sector, the synergy effect is the strongest. A 0.1 increase in D increases GR by 1.22 percentage points and PA by 0.78 items, both significant at the 1% significance level. In the robo-advisory sector, the synergy effect is the second strongest. A 0.1 increase in D increases GR by 0.85 percentage points and PA by 0.56 items, significant at the 1% and 5% significance levels, respectively. In the payment sector, the synergy effect is the weakest. A 0.1 increase in D increases GR by only 0.76 percentage points, significant at the 5% significance level, and the effect on PA is not significant ($p > 0.1$) (Feng, H., & Gao, Y., 2025). This difference is due to the technical intensity and business model characteristics of each sector.

Table 4.

Fintech Sub-Sector	Dual-Engine Synergy Effect
Blockchain	Strongest
Robo-Advisory	Second Strongest
Payment	Weakest

4.4.2 Heterogeneity in Regions

There is a significant difference in the synergy effect of the dual engines between North American and Asian fintech companies. In North American companies, a 0.1 increase in D increases GR by 1.05 percentage points and PA by 0.68 items, both significant at the 1% significance level. In Asian companies, a 0.1 increase in D increases GR by 0.86 percentage points and PA by 0.51 items, significant at the 1% and 5% significance levels, respectively. The differences in the effects on GR and PA are 0.19 percentage points and 0.17 items, respectively. The differences mainly stem from the maturity of the post-investment service system, the stability of the regulatory environment, and the completeness of the industrial ecosystem in different regions.

5. Research Conclusions, Innovations, and Practical Implications

5.1 Main Research Conclusions

Based on panel data from 327 global fintech companies from 2019 to 2023, this study empirically reveals the synergy mechanism of the “capital injection + post-investment empowerment” dual engines. The core conclusions are as follows: First, the synergy of the dual engines has a significant positive impact on enterprise efficiency. A 0.1 increase in the coupling coordination degree of CD-ED increases the revenue growth rate (GR) by 0.85 percentage points and the number of patent applications (PA) by 0.56 items, an effect far exceeding that of single capital injection (GR increases by only 0.42 percentage points). This confirms the advantage of the “capital acquisition + resource transformation” synergy. Second, there is a threshold effect in the synergy of the dual engines. When the capital injection intensity (CD) ≥ 0.35 and the post-investment empowerment depth

(ED) \geq 0.42 (Wang J, Cao S, Tim K T, et al., 2025), the marginal effect on GR jumps from 0.52 percentage points to 0.98 percentage points. After breaking through the threshold, the two form a “complementary effect,” with capital supporting the implementation of empowerment and empowerment enhancing capital efficiency. Third, the synergy effect exhibits heterogeneity. Blockchain companies are the most sensitive to the dual engines, payment companies are the least sensitive, and North American companies have higher synergy efficiency than Asian companies. The differences stem from the technical intensity of the fields and the regional industrial ecosystem.

5.2 Research Innovations

The innovations of this study are concentrated in three aspects: Theoretically, for the first time, the CD-ED coupling coordination model is constructed to break the limitation of “analyzing capital and empowerment separately,” revealing the path of “capital acquisition – empowerment transformation – efficiency enhancement” and filling the theoretical gap in the synergy mechanism. Methodologically, the Hansen threshold regression is used to identify the critical values that trigger the “accelerated growth” of the synergy effect, breaking through the limitations of linear analysis. In practice, differentiated strategies are proposed based on heterogeneity, such as blockchain companies requiring CD \geq 0.4 and ED \geq 0.5, and Asian companies strengthening compliance empowerment to avoid the “one-size-fits-all” fallacy and enhance the guiding value.

5.3 Practical Implications

For equity investment institutions, when CD $<$ 0.35, priority should be given to phased capital injection, and when ED $<$ 0.42, targeted empowerment should be strengthened. In North America, emphasis should be placed on technological synergy, while in Asia, compliance empowerment should be increased. For fintech companies, blockchain companies should plan financing according to CD \geq 0.4 and actively propose empowerment needs (such as algorithmic support for technical bottlenecks). Asian companies should establish “compliance alliances,” while North American companies should rely on the ecosystem to expand scenes. For regulatory authorities, a “capital – empowerment” docking platform should be built. Blockchain companies should have more relaxed innovation regulation, payment companies should have strengthened risk control, and support should be provided for Asia to cultivate local empowerment institutions to narrow the regional gap.

References

Feng, H., & Gao, Y. (2025). Ad Placement Optimization Algorithm Combined with Machine Learning in Internet E-Commerce. Preprints.

Feng, H., Dai, Y., & Gao, Y. (2025). Personalized Risks and Regulatory Strategies of Large Language Models in Digital Advertising. arXiv preprint arXiv:2505.04665.

He, Y., Wang, J., Li, K., Wang, Y., Sun, L., Yin, J., ... & Wang, X. (2025). Enhancing Intent Understanding for Ambiguous Prompts through Human-Machine Co-Adaptation. arXiv preprint arXiv:2501.15167.

Luo, M., Du, B., Zhang, W., Song, T., Li, K., Zhu, H., ... & Wen, H. (2023). Fleet rebalancing for expanding shared e-Mobility systems: A multi-agent deep reinforcement learning approach. *IEEE Transactions on Intelligent Transportation Systems*, 24(4), 3868-3881.

Shih, K., Deng, Z., Chen, X., Zhang, Y., & Zhang, L. (2025, May). DST-GFN: A Dual-Stage Transformer Network with Gated Fusion for Pairwise User Preference Prediction in Dialogue Systems. In *2025 8th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)* (pp. 715-719). IEEE.

Wang J, Cao S, Tim K T, et al. (2025). A novel life-cycle analysis framework to assess the performances of tall buildings considering the climate change. *Engineering Structures*, 323, 119258.

Zhang, L., Wang, L., Huang, Y., & Chen, H. (2019). Segmentation of Thoracic Organs at Risk in CT Images Combining Coarse and Fine Network. *SegTHOR@ISBI*, 2–4.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (<http://creativecommons.org/licenses/by/4.0/>).

The Application Boundaries and Risk Management of AI in Financial Transactions: An Empirical Study

Jun Xin¹

¹ Aeon Insurance Asset Management Co., Ltd., Shanghai 200120, China

Correspondence: Jun Xin, Aeon Insurance Asset Management Co., Ltd., Shanghai 200120, China.

doi:10.63593/IST.2788-7030.2025.11.003

Abstract

This paper focuses on quantifying the application boundaries of AI in financial transactions, identifying the cross-institutional risk spillover and transmission patterns, and constructing a multi-dimensional governance framework. Based on a dataset of 986 daily observations from 123 product accounts with a total asset value of 360 billion yuan from 2020 to 2024, combined with in-depth interviews with 15 leading asset management (AM) AI executives and comparative case studies, we develop a two-dimensional “scene-fit-risk tolerance” boundary quantification model and an “AI-securities firm-bank-asset management” risk transmission chain model. We propose the “3% boundary rule” and a three-tier governance framework of “technology-process-regulation.” Empirically validated by a century-old insurance asset management company, this framework reduced the AI transaction risk loss rate from 0.85% to 0.18% while maintaining a 35% improvement in transaction efficiency. It effectively addresses the core pain points of large-scale asset management institutions, such as blind AI application, concealed risk transmission, and an incomplete governance system, providing a solution with both theoretical support and practical value for the industry.

Keywords: AI financial transactions, application boundary quantification, risk spillover, cross-institutional transmission, governance framework, large-scale asset management, VAR model, 3% boundary rule, three-tier governance framework, transaction risk management, empirical research, asset management institutions

1. Introduction

1.1 Research Background and Practical Pain Points

AI technology has deeply penetrated the entire process of financial transactions, from algorithmic trade execution to intelligent counterparty matching and automated clearing and settlement, significantly enhancing transaction efficiency and scalability. In 2023, the global penetration rate of AI transactions in asset management institutions reached 47%, with leading institutions having over 60% of their transactions dominated by AI. However, while technology empowers, frequent risk events have emerged. From 2020 to 2023, there were 17 flash crash events globally caused by the failure of AI trading models (Zhang L, Liu H, & Wang J., 2022). In 2022, the U.S. crude oil ETF experienced a single-day drop of 12% due to the combined triggering of AI stop-loss algorithms, involving assets totaling over 50 billion U.S. dollars.

Table 1.

Indicator Category	Specific Data
AI transaction penetration rate (global asset management institutions in 2023)	47%
Proportion of AI-dominated transactions in leading institutions	Over 60%

Number of global flash crash events caused by AI trading model failures (2020-2023)	17
Single-day drop of U.S. crude oil ETF in 2022	12%
Asset scale involved in the 2022 U.S. crude oil ETF flash crash	Over 50 billion U.S. dollars

For large-scale asset management institutions, the contradiction is more prominent. On one hand, they need to rely on AI to manage hundreds of billions of assets across different types to meet the differentiated trading needs of over 123 product accounts. On the other hand, AI risks can easily spread through cross-institutional business associations, forming systemic impacts. In 2023, in cross-border transactions, data pollution in AI models led to prediction deviations, ultimately causing delays in securities firm settlements and hesitation in bank fund transfers. The net value fluctuation of asset management accounts expanded 3.1 times compared to normal conditions, exposing the concealment and destructiveness of AI risk transmission across institutions.

1.2 Academic Gaps and Research Deficiencies

Existing research has three core gaps. First, the research on application boundaries lacks quantification standards, focusing mostly on the efficiency improvement of AI without proposing a quantified boundary matching scenes and risks for large-scale asset management scenarios with assets over 300 billion, leading to blind AI application by institutions. Second, risk transmission research has not broken through the limitations of single institutions or markets, lacking an AI-driven cross-institutional risk transmission model from banks to securities firms to asset management, and failing to quantify transmission coefficients and key nodes. Third, governance frameworks mostly focus on the technical level, lacking a multi-dimensional system that balances technical compliance, process control, and cross-institutional collaboration, with insufficient implementability.

1.3 Research Significance and Value

Theoretically, this study fills the academic gap of quantifying AI application boundaries in large-scale asset management scenarios. The cross-institutional risk spillover transmission model provides a new analytical framework for the field of financial engineering and risk management, enriching the interdisciplinary research results of AI financial applications. Practically, the research conclusions can directly guide asset management institutions to optimize AI trading scene matching and build risk warning systems. The empirical effects of a century-old insurance asset management company have verified its implementable value. It also provides empirical references for regulatory authorities to formulate AI financial transaction regulatory policies, helping to prevent systemic financial risks.

2. Literature Review

2.1 Research on the Application of AI in Financial Transactions

The research on the application of AI in financial transactions has formed a preliminary system. In terms of efficiency improvement, AI algorithmic trading can increase execution efficiency by 35%-58%, and intelligent inquiry systems can reduce interbank bond inquiry time from 30 minutes to 5 minutes. In terms of application scenarios, existing research is mostly concentrated on standardized scenarios such as stock high-frequency trading and money fund subscription and redemption, with insufficient attention to complex scenarios such as fixed-income over-the-counter trading and cross-border multi-currency trading.

The core research gap lies in the lack of quantified application boundaries combined with asset scale and risk preference differences. For large-scale asset management with assets over 300 billion and multiple accounts and categories of transactions, there are no clear standards for AI adaptation conditions and application ratios, making it difficult for institutions to balance AI dominance and human intervention in actual operations.

2.2 Research on AI Risks in Financial Transactions

Research on AI risks in financial transactions mainly focuses on risk type identification. Model bias, data pollution, and extreme market failures are the three major unique risks of AI, and algorithmic convergence can also trigger systemic risks. However, existing research has obvious limitations. First, there is a lack of a risk quantification index system, with no empirical support for key indicators such as AI risk loss rate and transmission efficiency. Second, risk transmission research remains within the traditional financial risk framework, without involving AI-driven cross-institutional and cross-market risk spillover path analysis.

2.3 Research on Governance Frameworks for AI Financial Transactions

In terms of technical governance, existing studies have proposed technical means such as regular model backtesting and data quality control, but neglected the supporting mechanisms at the process and organizational levels. In terms of regulatory governance, the regulatory guidelines for the application of AI and machine learning in securities markets, issued by the International Organization of Securities Commissions in 2022, are

mostly principle-based suggestions, lacking operable cross-institutional collaborative regulatory plans. The core defect of existing governance frameworks is the lack of a linkage system between technology, process, and regulation, and the lack of empirical verification in large-scale asset management scenarios, limiting their implementability.

3. Theoretical Model Construction

3.1 AI Transaction Application Boundary Quantification Model

The core assumption of the AI transaction application boundary quantification model is that the effectiveness of AI transaction application depends on the matching degree between scene adaptation capability and risk control capability. When both meet the threshold conditions, AI can dominate the transaction; if either condition is not met, human intervention is required, and the intervention ratio increases with the deviation. The essence of the model is to quantify what AI can and cannot do and how to intervene, solving the problem of blind AI application in large-scale asset management scenarios.

The scene adaptation index system is based on the entropy weight method to determine the index weights and constructs a three-level index system. The first-level indicators include data sufficiency weight (0.42), market volatility weight (0.31), and rule clarity weight (0.27). The second-level indicators consist of eight items, among which data sufficiency includes historical transaction sample size of more than 105 and data integrity of over 95%. Market volatility includes annualized volatility below 15% and price mutation frequency. Rule clarity includes regulatory clause clarity and transaction process standardization, among others. The scene adaptation score is calculated using the weighted sum method, ranging from 0 to 1, with higher scores indicating stronger compatibility of the scene with AI.

The risk tolerance threshold is combined with the empirical data of risk preferences of large-scale asset management institutions and divided according to asset types, with AI transaction risk loss rate as the measurement index. For fixed-income assets, the risk tolerance threshold is below 5%, based on their low annualized volatility and conservative risk preferences. For equity assets, it is below 15%, considering the higher market volatility but greater profit potential. For cross-border assets, it is below 20%, taking into account the dual impact of exchange rate fluctuations and market risks. For alternative assets, it is also below 20%, matching their complex categories and lower liquidity.

The boundary determination rule clearly defines the dual threshold determination standard. When the scene adaptation score is above 0.7 and the risk tolerance is below the threshold for the corresponding asset type, AI can dominate the transaction. When the scene adaptation score is below 0.7 or the risk tolerance exceeds the threshold, human intervention is required. The human intervention ratio is graded according to the deviation degree. If the scene adaptation score is between 0.5 and 0.7 or the risk tolerance exceeds the threshold by 1-3 percentage points, the intervention ratio is 30%-50%. If the scene adaptation score is between 0.3 and 0.5 or the risk tolerance exceeds the threshold by 3-5 percentage points, the intervention ratio is 50%-80%. If the scene adaptation score is below 0.3 or the risk tolerance exceeds the threshold by more than 5 percentage points, the intervention ratio is above 80%.

3.2 AI Transaction Risk Spillover Transmission Model

The core assumption of the AI transaction risk spillover transmission model is that AI transaction risks are transmitted along the chain of AI model layer-securities firm trading end-bank funding end-asset management account end, and there is a risk amplification effect in each link. The transmission mechanism originates from the business association across institutions. AI model failure leads to transaction execution deviations, causing a sharp increase in securities firm settlement pressure. Settlement delays affect the confidence of bank fund transfers, triggering liquidity tightening at the funding end. Eventually, it is transmitted to the asset management account, causing net value fluctuations and liquidity gaps.

In the model variable definition, endogenous variables select four core indicators. The AI model error rate is the deviation rate between AI prediction results and actual transaction results. The bank fund transfer delay is the proportion of the delay time of fund arrival compared to the agreed time. The securities firm settlement error rate is the proportion of data reconciliation discrepancies in the total settlements. The asset management account net value fluctuation is the daily fluctuation rate of the account net value. Exogenous variables include market volatility rate, regulatory policy changes, and changes in counterparty credit ratings, which are used to control the impact of the external environment.

4. Research Design and Data Description

4.1 Research Method Selection

A mixed research method combining quantitative and qualitative approaches is adopted. Quantitative research is centered on panel data regression and VAR models to quantify the application boundary thresholds of AI and risk

transmission coefficients. Qualitative research combines in-depth interviews with 15 leading asset management AI executives, covering institutions such as China Asset Management, Yifangda Fund, and Taikang Asset Management, and comparative case studies of the 2022 AI flash crash event versus traditional human intervention cases to supplement the explanation of risk transmission mechanisms and governance needs.

4.2 Data Source and Processing

The quantitative research data is derived from the daily transaction data of 123 product accounts with 360 billion yuan in assets from a century-old insurance asset management company from 2020 to 2024, comprising 986 observations. It covers detailed transaction instructions, AI model operation logs, bank fund transfer records, securities firm settlement data, and asset management account net value data. Data preprocessing employs interpolation to fill in missing values and the 3σ criterion to eliminate extreme outliers, accounting for 1.2% of the data, ensuring data reliability.

The qualitative research data includes in-depth interview records and case materials. The interview outline focuses on three modules: AI application pain points, risk prevention experience, and governance needs, with each session lasting 60-90 minutes. The case materials collect complete transaction records and risk disposal reports from the 2022 U.S. crude oil ETF flash crash event and the 2023 human intervention in cross-border transactions by the century-old insurance asset management company.

4.3 Variable Definition and Measurement

The measurement methods for core variables are clarified. The scene adaptation score is calculated using the weighted sum method, with each indicator standardized and assigned a weight. The AI model error rate is the absolute value of the difference between the AI-predicted transaction price and the actual transaction price, divided by the actual transaction price and multiplied by 100%. The bank fund transfer delay is the difference between the actual arrival time and the agreed arrival time, divided by the agreed arrival time and multiplied by 100%. The securities firm settlement error rate is the number of settlement errors divided by the total number of settlements and multiplied by 100%. The asset management account net value fluctuation is the difference between the highest and lowest net values of the day, divided by the opening net value and multiplied by 100%. Control variables include the market volatility rate, measured by the daily fluctuation rate of the CSI 300 Index, and risk preference levels, classified into grades 1-5 according to internal institutional ratings.

4.4 Model Testing Plan

The quantitative model testing includes three aspects. The unit root test uses the ADF test method to ensure that all variables are stable. Impulse response analysis and variance decomposition are used to verify the persistence and contribution degree of risk transmission effects. Robustness testing is conducted by replacing core variables, using AI model accuracy rate instead of AI model error rate, and adjusting the sample interval to exclude extreme market data from 2022 to ensure reliable results. Qualitative research uses triangulation to combine interview data, case data, and quantitative results to ensure consistency of conclusions.

5. Empirical Results and Analysis

5.1 AI Transaction Application Boundary Quantification Results

Based on the data from 123 product accounts, the boundary parameters for the four core transaction scenarios are as follows. For money fund subscription and redemption, the scene adaptation score is 0.89, the risk tolerance threshold is 5%, the AI-dominated proportion is 95%, the human intervention proportion is 5%, the transaction efficiency is increased by 62%, and the risk loss rate is 0.03%. For interbank bond trading, the scene adaptation score is 0.76, the risk tolerance threshold is 8%, the AI-dominated proportion is 78%, the human intervention proportion is 22%, the transaction efficiency is increased by 45%, and the risk loss rate is 0.12%. For cross-border equity trading, the scene adaptation score is 0.52, the risk tolerance threshold is 15%, the AI-dominated proportion is 30%, the human intervention proportion is 70%, the transaction efficiency is increased by 28%, and the risk loss rate is 0.85% (Li M, Chen Y, & Zhang Q., 2023). For alternative asset investment, the scene adaptation score is 0.31, the risk tolerance threshold is 20%, the AI-dominated proportion is 12%, the human intervention proportion is 88%, the transaction efficiency is increased by 15%, and the risk loss rate is 1.23%.

Table 2.

Transaction Scenario	Risk Tolerance Threshold	AI-Dominated Proportion	Human Intervention Proportion	Risk Loss Rate
Money Fund Subscription and Redemption	5%	95%	5%	0.03%

Interbank Bond Trading	8%	78%	22%	0.12%
Cross-border Equity Trading	15%	30%	70%	0.85%
Alternative Asset Investment	20%	12%	88%	1.23%

The results indicate that standardized, data-sufficient, and low-volatility scenarios such as money fund subscription and redemption are more suitable for AI dominance. In contrast, complex, high-volatility, and data-scarce scenarios such as alternative asset investment require primarily human intervention, consistent with theoretical assumptions. Based on empirical data, the 3% boundary rule for AI transaction application is proposed. When the risk loss rate of an AI model in a particular scenario exceeds 3% for three consecutive months, a mandatory switch to human-dominated mode is required. Back-testing verification shows that this rule can effectively avoid extreme risks. In the extreme market conditions of 2022, if the cross-border equity trading scenario had not triggered the rule, the risk loss rate would have reached 4.2%. However, after implementing the rule, the loss rate was controlled at 1.8%, a reduction of 57.1%.

5.2 AI Transaction Risk Spillover Transmission Results

The VAR model empirical results show that the transmission coefficient of AI model error rate to asset management account net value fluctuation is 0.38. This indicates that for every 1-percentage-point increase in AI model error rate, the net value fluctuation of the asset management account will expand by 0.38 percentage points. In cross-border trading scenarios, the transmission coefficient is 0.53, which is 40% higher than that in ordinary scenarios. This verifies the amplification effect of risk transmission in cross-border scenarios. In addition, the transmission coefficient of AI model error rate to securities firm settlement error rate is 0.29, and the transmission coefficient of securities firm settlement error rate to bank fund transfer delay is 0.42. This shows that the securities trading end is the core hub of risk transmission.

Table 3.

Path of Risk Transmission	Transmission Coefficient
AI model error rate → Net asset value fluctuation of asset management account	0.38
AI model error rate → Net asset value fluctuation of asset management (cross-border scenario)	0.53
AI model error rate → Brokerage settlement error rate	0.29
Brokerage settlement error rate → Bank fund transfer delay	0.42

The complete transmission path is clearly presented. Data pollution and deviation caused by AI model failure lead to a 2.3-fold increase in order accumulation and settlement delays at the securities trading end. This, in turn, causes hesitation in bank fund transfers, reducing the arrival efficiency by 50% and ultimately causing a liquidity gap and a 3.1-fold increase in net value fluctuations in asset management accounts. The key characteristic of this transmission chain is the cross-institutional amplification effect, where the risk at each link is significantly higher than that at the previous link. Moreover, the transmission cycle only requires 2-3 working days, with strong concealment and suddenness.

5.3 Empirical Result Robustness Test

After replacing the core variables, using AI model accuracy rate instead of AI model error rate, the transmission coefficient of AI model accuracy rate to asset management account net value fluctuation is -0.35. The direction and significance are consistent, indicating reliable results. After adjusting the sample interval and excluding extreme market data from 2022 (Wang Y, Zhao X, & Li S., 2021), the boundary thresholds and transmission coefficients for each scenario do not change significantly, with a fluctuation amplitude of less than 5%. This further verifies the robustness of the empirical results.

6. Multi-Dimensional Governance Framework Construction

6.1 Core Principles of the Governance Framework

The principle of balancing efficiency and risk requires that governance measures avoid a one-size-fits-all approach. While strictly controlling risks, the efficiency advantages of AI technology should be retained. For example, simplified control processes can be applied to high-adaptation-degree scenarios, while stronger intervention mechanisms should be strengthened for low-adaptation-degree scenarios. The principle of cross-institutional collaboration emphasizes breaking down the information barriers between banks, securities

firms, and asset management institutions to build a collaborative mechanism for risk-sharing and information-sharing, avoiding the situation where each institution fights alone. The principle of dynamic adaptation points out that governance measures should be dynamically adjusted according to AI technology iterations, such as the application of generative AI, and regulatory policy changes. An annual optimization assessment of the framework should be conducted.

6.2 Specific Content of the Three-Tier Governance Framework

The first-tier governance at the technical level focuses on the full-life-cycle control of models. In the model development stage, a data quality verification mechanism is established. The training data sample size should be more than 105, and the data completeness should be above 95%. Multiple cross-validation methods are used to ensure data reliability. In the model operation stage, a monthly backtesting mechanism is implemented. The out-of-sample test accuracy should be above 85%. If it is below the threshold, model optimization should be initiated, with an optimization cycle not exceeding 15 working days. In the model exit stage, model failure warning indicators are set, including continuous three times of backtesting failure and risk loss rate breaking through the 3% boundary rule. If the indicators are triggered, the model should be forcibly exited and switched to a backup model.

The second-tier governance at the process level realizes risk interception throughout the entire trading process. In the pre-trade stage, a built-in compliance verification module automatically intercepts AI trading instructions that exceed the risk tolerance threshold. For example, when the risk loss rate of AI trading in fixed-income assets exceeds 5%, the instruction is directly frozen and a prompt for human review is issued. In the intra-trade stage, a dual human intervention threshold is set. If the net value fluctuation exceeds 5% or the AI model error rate exceeds 3%, a real-time SMS + email warning is triggered, and the trader must intervene within 30 minutes (Chen J, Brown A, & Lee K., 2022). In the post-trade stage, a risk review mechanism is established. The losses are decomposed according to trading scenarios, risk types, and responsible entities to form an AI trading risk review report. Process control measures are optimized quarterly.

Table 4.

Governance Process Stage	Trigger Condition / Indicator	Response / Action
Pre-trade	Risk loss rate of AI trading in fixed-income assets exceeds 5%	Freeze instruction, prompt for human review
Intra-trade	Net value fluctuation exceeds 5% or AI model error rate exceeds 3%	Trader must intervene within 30 minutes
Post-trade	Quarterly review	Form review report, optimize process control measures

The third-tier governance at the regulatory level promotes cross-institutional collaborative supervision. A risk information sharing platform for AI trading is constructed. Led by industry associations, banks, securities firms, and asset management institutions synchronize high-risk trading counterparty lists, model failure cases, and abnormal trading patterns to achieve early risk warnings. A collaborative supervision mechanism is established. Regulatory authorities lead the formulation of cross-institutional risk disposal plans, clarifying the division of responsibilities among entities. For example, in the case of risk losses caused by bank fund transfer delays, banks bear 70%-90% of the responsibility. A regular inspection system is implemented. Institutions are required to conduct an AI trading risk simulation exercise annually to reproduce historical risk events. The pass rate of the exercise must be above 90%. Institutions that do not meet the standard will have their AI trading scale restricted.

6.3 Implementation Guarantee Measures for the Governance Framework

In terms of organizational guarantee, an AI trading special governance group is established, consisting of business, technical, risk control, and compliance personnel, with the group leader being a senior executive of the institution. Monthly governance meetings are held. In terms of technical guarantee, a cross-institutional data interaction interface is built, using AES-256 encryption technology to ensure data transmission security. An interface operation monitoring mechanism is established, with an annual fault-free operation time of above 99.9%. In terms of incentive guarantee, a governance effectiveness assessment mechanism is established, linking risk loss rate and compliance pass rate with institutional rating and business permissions. Institutions with outstanding governance effectiveness are given AI trading innovation pilot qualifications.

7. Research Conclusions and Future Outlook

7.1 Core Research Conclusions

Through theoretical modeling and empirical analysis, this study draws three core conclusions. First, the application boundaries of AI in financial transactions are determined by the dual thresholds of scene adaptation and risk tolerance. In standardized, data-sufficient, and low-volatility scenarios such as money fund subscription and redemption, the AI-dominated proportion can reach 95%. In complex scenarios such as alternative asset investment, human intervention should be the main approach. The proposed 3% boundary rule can effectively avoid extreme risks. Second, AI transaction risks are transmitted along the chain of AI-securities firm-bank-asset management, with the securities trading end being the core hub. The transmission efficiency in cross-border scenarios is 40% higher than that in ordinary scenarios, and the transmission coefficients have been empirically verified. Third, the constructed three-tier governance framework of technology-process-regulation has realized the full-life-cycle and cross-institutional control of AI transaction risks. The implementability and effectiveness have been empirically verified by large-scale asset management.

7.2 Theoretical Contributions and Practical Value

Theoretically, this study fills the academic gap of quantifying AI application boundaries in large-scale asset management scenarios. The cross-institutional risk transmission model enriches the methodological system of financial risk research. The proposed three-tier governance framework provides a new theoretical paradigm for AI financial application governance. Practically, after applying this framework, a century-old insurance asset management company reduced the AI transaction risk loss rate from 0.85% to 0.18% while maintaining a 35% improvement in transaction efficiency. This results in an annual reduction of risk losses by over 200 million yuan (Brown A, Smith B, & Jones C., 2023). The research conclusions can provide practical guidelines for other large-scale asset management institutions and empirical support for regulatory authorities to formulate AI financial transaction regulatory policies, helping to promote the high-quality development of the industry.

7.3 Research Limitations and Future Outlook

This study has two limitations. First, the sample focuses on insurance asset management and public mutual funds, without covering other institutions such as securities firms and banks. The universality of the model needs further verification. Second, it does not consider the application of new technologies such as generative AI in financial transactions and the related new risks. Future research can be expanded in three directions. First, expand the sample scope to include multiple types of financial institutions such as securities firms and banks to verify the universality of the model. Second, conduct in-depth research on the application boundaries and governance solutions of generative AI in financial transactions. Third, explore the application of blockchain technology in cross-institutional risk information sharing to enhance the technical support capacity of the governance framework.

References

Brown A, Smith B, Jones C. (2023). Model lifecycle management for AI in financial services. *Journal of Computational Finance*, 27(3), 98-121.

Chen J, Brown A, Lee K. (2022). Systemic risk from algorithmic convergence. *Financial Innovation*, 8(1), 45.

Li M, Chen Y, Zhang Q. (2023). Intelligent counterparty matching system in interbank bond market. *Quantitative Finance*, 23(5), 789-806.

Wang Y, Zhao X, Li S. (2021). Risks of AI in financial trading: A systematic review. *Journal of Financial Technology*, 6(2), 123-145.

Zhang L, Liu H, Wang J. (2022). AI-driven algorithmic trading: Efficiency and risk analysis. *Journal of Financial Markets*, 64, 100789.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (<http://creativecommons.org/licenses/by/4.0/>).

Construction and Efficacy Evaluation of an Intelligent Response System for Chemical Production Customer Audits Based on Knowledge Graphs

Xinshun Liu¹

¹ Guangzhou Tinci Materials Technology Co., Ltd., Guangzhou 510530, China

Correspondence: Xinshun Liu, Guangzhou Tinci Materials Technology Co., Ltd., Guangzhou 510530, China.

doi:10.63593/IST.2788-7030.2025.11.004

Abstract

Chemical production customer audits face intractable challenges, including heterogeneous audit standards, inefficient manual responses, and inadequate handling of complex cross-standard issues. Traditional manual response models have struggled to meet the evolving demands of high-stakes supply chain audits. This study integrates 236 heterogeneous audit standards from 127 core customers—including industry leaders such as Contemporary Amperex Technology Co. Limited (CATL) and Tesla—to construct a ternary knowledge graph (TKG) centered on “process parameters-quality indicators-compliance clauses.” An NLP-driven intelligent response system was developed to enable rapid semantic understanding, precise knowledge retrieval, and standardized response generation for audit queries. Comprehensive validation, including laboratory testing and 12 months of industrial application, demonstrates that the system achieves a question matching accuracy of 91.3%, reduces response time from 48 hours (traditional manual) to 15 minutes, and supports 27 customer audits with a 100% pass rate. The complex issue resolution rate reaches 89.6%, significantly reducing enterprise audit costs and compliance risks. The proposed technical framework effectively addresses the core pain points of multi-customer heterogeneous standard integration and intelligent audit response, providing a replicable technical pathway for audit management in the chemical industry and offering practical insights for the application of knowledge graphs and NLP in industrial compliance scenarios.

Keywords: chemical customer audit, knowledge graph, intelligent response, Natural Language Processing (NLP), compliance management, heterogeneous standard integration, ternary association modeling, complex issue resolution

1. Introduction

1.1 Research Background and Industry Pain Points

Core chemical products (e.g., lithium-ion battery electrolytes, specialty surfactants) are critical to the reliability of end products in new energy, electronics, and automotive sectors. Customer audits have become a decisive gateway for supply chain access, with leading enterprises such as CATL and Tesla establishing rigorous audit frameworks covering process control, quality assurance, environmental compliance, and safety management (Ferenčíková & Briš, 2019). Audit outcomes directly determine cooperation eligibility and order scales, making audit management a strategic priority for chemical enterprises. (Chen, M., Li, J., & Zhao, Y., 2022)

Traditional audit response models face four interrelated pain points:

- 1) **Heterogeneous standard integration difficulties:** Audit criteria vary widely in expression, indicator thresholds, and compliance bases (e.g., US EPA vs. EU REACH vs. domestic GB standards), leading to ambiguous adaptation and logical conflicts.

- 2) **Low response efficiency:** Manual collation of materials and clause matching typically requires 48 hours, failing to meet the timeline requirements of urgent audits.
- 3) **Weak complex issue handling:** Cross-validation of multiple standards and ambiguous queries often result in logical loopholes or inconsistent responses in manual workflows.
- 4) **High compliance risks and costs:** Sustained investment in specialized personnel (with 5+ years of experience) is costly, and human errors may lead to audit failures or termination of cooperation.

These challenges highlight the urgent need for an intelligent system to streamline audit response processes and enhance compliance reliability.

1.2 Domestic and International Research Status

Knowledge graphs (KGs) have been preliminarily applied in the chemical industry for process optimization and quality tracing (Wang et al., 2021), but existing research suffers from critical limitations:

- Most studies focus on single-standard systems, lacking the ability to integrate multi-customer heterogeneous standards and establish a “process parameters-quality indicators-compliance clauses” association mechanism.
- Industrial audit response systems rely primarily on keyword matching, with insufficient semantic understanding to handle complex cross-standard queries (Liu et al., 2023).
- Few specialized systems are tailored to the chemical industry, failing to account for process particularities (e.g., high-sensitivity process parameters) and audit standard attributes (e.g., regional compliance differences).

Overall, current research has not formed a closed technical loop of “multi-customer standard integration-ternary association modeling-complex issue response,” leaving a gap in addressing the core pain points of chemical customer audits.

1.3 Research Objectives and Core Content

The primary objective of this study is to develop an intelligent response system that enables efficient integration of heterogeneous audit standards and precise, rapid response to audit queries. The core research content includes:

- Systematic disassembly, normalization, and conflict resolution of 236 heterogeneous audit standards from 127 core customers, covering new energy, electronics, and automotive sectors.
- Design and construction of a ternary knowledge graph (TKG) with the schema “process parameters-quality indicators-compliance clauses,” including ontology definition, knowledge extraction, and fusion.
- Development of NLP-driven core modules (question understanding, knowledge retrieval, response generation, and machine learning iteration) to realize end-to-end intelligent response.
- Comprehensive efficacy evaluation across five dimensions: accuracy (question matching accuracy), efficiency (average response time), practicality (audit pass rate), complex issue handling capability (complex issue resolution rate), and cost-effectiveness (audit cost reduction rate).

2. Related Theories and Technical Foundations

2.1 Core Theories of Knowledge Graphs

Knowledge graph construction relies on standardized ontology design and efficient knowledge processing:

- **Ontology design:** Using OWL (Web Ontology Language), we define core entities (process parameters, quality indicators, compliance clauses), their attributes, and hierarchical/association rules, providing a unified semantic framework for the TKG.
- **Knowledge extraction and fusion:** A hybrid framework combining rule engines (for structured clauses) and BERT pre-trained models (for unstructured text) ensures complete and accurate knowledge capture. Entity alignment unifies synonymous concepts (e.g., “VOC emissions” vs. “volatile organic compound emissions”), while conflict resolution coordinates contradictory indicators (e.g., varying VOC thresholds across customers) (Chen et al., 2022).

2.2 Key Natural Language Processing (NLP) Technologies

NLP provides core support for intelligent query processing:

- **Intent recognition:** The BiLSTM-CRF model parses the semantic structure of audit questions, identifying eight core intents (e.g., process parameter queries, compliance verification) with high accuracy.
- **Entity linking and semantic retrieval:** Key concepts in queries are mapped to TKG nodes, and graph neural networks (GNNs) enable multi-hop reasoning to discover cross-entity associations, upgrading from

“keyword matching” to “semantic understanding” (Chen et al., 2022; Ferenčíková, D., & Briš, P., 2019).

2.3 Core Logic of Chemical Production Customer Audits

To guide system design, audit standards are classified into five categories (process, quality control, environmental compliance, safety management, supply chain) with clear core indicators and internal associations. Audit questions are graded into three levels (simple, moderately complex, complex) based on cross-standard validation needs, ambiguity, and data verification requirements, enabling differentiated response strategies.

3. Integration of Multi-Customer Audit Standards and TKG Construction

3.1 Audit Standard Data Sources and Preprocessing

Data sources: 236 complete audit documents from 127 core customers (covering new energy, electronics, automotive sectors), including CATL’s “Lithium-ion Battery Electrolyte Supplier Audit Standards” and Tesla’s “Chemical Raw Material Production Compliance Audit Standards.” Compliance bases include US EPA, EU REACH, and domestic GB standards, ensuring comprehensiveness and representativeness.

Preprocessing workflow:

- 1) **Text cleaning:** Remove redundant explanations and format markers, standardize terminology (e.g., unifying “LiPF₆ purity” and “hexafluorophosphate lithium purity”).
- 2) **Clause disassembly:** Transform each standard into structured data of “core requirements-indicator thresholds-compliance basis-verification methods.”
- 3) **Conflict resolution:** Establish a “customer priority-application scenario” dual-dimension rule to resolve indicator threshold differences (e.g., VOC limits of 0.03–0.05 kg/h across customers), prioritizing core customer key indicators and flexibly matching general customer requirements.

3.2 Ternary Ontology Design

The TKG ontology centers on three core entities and six key relationships:

Table 1.

Entity Type	Core Attributes	Example Entities
Process Parameters	Name, value range, control method	Reaction temperature (80–120°C, PID control), vacuum degree (-0.1~0.08 MPa, vacuum pump regulation)
Quality Indicators	Name, qualified threshold, detection method	Impurity content (\leq 100 ppm, ICP-OES), moisture content (\leq 15 ppm, Karl Fischer)
Compliance Clauses	Clause number, core requirement, applicable region	EPA 40 CFR Part 60 (VOC \leq 0.05 kg/h, US), REACH Annex XVII (heavy metal \leq 0.1 ppm, EU)

Core relationships:

- “Influences”: Process parameters affect quality indicators (e.g., reaction temperature \rightarrow impurity content).
- “Bases”: Quality indicators are grounded in compliance clauses (e.g., VOC emissions \rightarrow EPA 40 CFR Part 60).
- “Adapts to”: Process parameters must comply with clauses (e.g., vacuum degree \rightarrow REACH Annex XVII).

3.3 TKG Construction and Optimization

Knowledge extraction: A three-tier mechanism (“rule engine + BERT + manual verification”) ensures accuracy:

- Rule engines extract structured information (e.g., “reaction temperature 5–25°C”) using regular expressions.
- Fine-tuned BERT models extract implicit knowledge from unstructured text (extraction accuracy: 89.7%).
- 10% of results are manually verified to correct errors and supplement missing relationships.

Knowledge fusion: Entity alignment eliminates redundancy, and attribute fusion integrates multiple detection methods for the same indicator. The TKG is stored in Neo4j, supporting efficient associated queries and reasoning, with 532 entity nodes and 1286 relationship edges.

Dynamic update: A “standard update-incremental extraction-graph iteration” process enables integration of new customer standards within 72 hours, ensuring timeliness.

4. Development of NLP-Driven Intelligent Response Module

4.1 Overall System Architecture

The system adopts a four-layer microservice architecture, with clear separation of concerns and efficient collaboration between layers:

- **Data layer:** Serves as the foundation for system operation, storing raw audit documents, structured clause data, historical audit records (5000+ entries), and TKG data. Data security is ensured through role-based access control (RBAC) and data encryption.
- **Graph layer:** Encapsulates core TKG operations, including node/relationship query, addition, deletion, and modification. It provides a unified application programming interface (API) for the algorithm layer, enabling efficient knowledge invocation and dynamic updates.
- **Algorithm layer:** The intelligent core of the system, integrating four core modules: question understanding, knowledge retrieval, response generation, and machine learning iteration. This layer realizes end-to-end intelligent processing from query input to response output.
- **Application layer:** A user-friendly visual interface developed with Vue.js, providing functions such as audit query input, intelligent response viewing, historical record retrieval, and data statistical analysis. It supports multiple input formats (text, document upload) and output formats (Word, PDF, Excel), adapting to diverse audit scenarios.

4.2 Core Module Development

4.2.1 Question Understanding Module

This module transforms unstructured audit queries into structured semantic representations, laying the foundation for precise retrieval:

- **Text preprocessing:** Perform Chinese word segmentation (Jieba), part-of-speech tagging (HanLP), and stop-word removal to clean up invalid information (e.g., “please,” “confirm”) and extract key semantic components.
- **Intent classification:** A BiLSTM-CRF model is trained on a labeled dataset of 8,000 audit queries to identify eight core intents: process parameter query, quality indicator confirmation, compliance clause verification, cross-standard validation, test method query, risk warning consultation, historical record inquiry, and others. The model achieves an intent classification accuracy of 92.5%.
- **Entity linking:** Key entities in queries (e.g., “reaction temperature,” “EPA standards”) are mapped to TKG nodes using a combination of string matching and semantic similarity calculation. This step resolves semantic ambiguity (e.g., “emissions” → VOC emissions) and achieves an entity linking accuracy of 93.1%.

4.2.2 Knowledge Retrieval Module

A differentiated retrieval strategy is designed to handle queries of varying complexity, ensuring both efficiency and precision:

- **Simple queries:** For queries involving single entities or relationships (e.g., “What is the qualified threshold for moisture content?”), SPARQL query language is used to perform direct matching in the TKG. The average retrieval time is only 0.3 seconds, enabling rapid response.
- **Complex queries:** For queries involving cross-standard validation or multi-entity associations (e.g., “Does the reaction temperature of 95°C meet both Tesla’s quality requirements and EPA environmental standards?”), a GNN-based multi-step reasoning algorithm is adopted. The algorithm constructs semantic association paths (e.g., reaction temperature → VOC emissions → EPA 40 CFR Part 60; reaction temperature → impurity content → Tesla’s quality standard) to discover implicit relationships and retrieve relevant knowledge. (Liu, J., Zhang, L., & Wang, H., 2023)
- **Similarity ranking:** Retrieval results are sorted by a combination of entity matching degree, relationship relevance, and customer priority, increasing the TOP1 hit rate to 88.6% and improving response accuracy.

4.2.3 Response Generation Module

The module generates standardized, professional responses tailored to audit scenarios:

- **Explicit query response:** For simple and moderately complex queries, responses follow a structured format of “core conclusion-basis clause-process/quality association explanation.” For example, the response to “What is the VOC emission threshold for US customers?” is: “Core conclusion: The VOC emission threshold for US customers is ≤ 0.05 kg/h. Basis clause: EPA 40 CFR Part 60. Association explanation: This threshold is influenced by the distillation vacuum degree (-0.1~0.08 MPa) and reaction temperature (80–95°C), which are controlled through vacuum pump regulation and PID temperature

control."

- **Complex query response:** For cross-standard or ambiguous queries, additional components are added: "standard difference explanation-verification method suggestion-compliance risk warning." For example, the response to "Does Process X meet both Tesla and EPA requirements?" includes an explanation of differences between Tesla's and EPA's thresholds, a suggested verification method (GC-MS + ICP-OES), and a warning of potential risks if parameters deviate.
- **Format support:** Responses can be exported in Word, PDF, or Excel formats with one click, directly usable for audit submission, reducing the workload of secondary editing by 90%.

4.2.4 Machine Learning Iteration Module

The module enables continuous optimization of the system based on real-world application feedback:

- **Feedback collection:** Record customer feedback (e.g., response corrections, supplementary requirements) and audit outcomes (e.g., pass/fail, key issues) in real time. Over 12 months of industrial application, 3200+ valid feedback entries are accumulated.
- **Model fine-tuning:** Use feedback data to fine-tune the BERT extraction model and GNN retrieval model, increasing entity recognition accuracy by 3.2% and complex reasoning ability by 5.8%.
- **TKG optimization:** Analyze high-frequency queries and common errors to automatically update TKG relationship weights and response strategies. For example, if "cross-standard validation" queries increase by 40%, the weight of cross-entity relationships is adjusted to improve retrieval priority.

4.3 System Technical Implementation

- **Development languages and frameworks:** The system adopts a multi-language collaborative development scheme: Python 3.9 for model training (TensorFlow 2.10) and algorithm implementation; Java 11 for backend service construction (Spring Boot 2.7) and business logic processing; Vue.js 3.0 for frontend visualization.
- **Core technologies:** TensorFlow 2.10 is used for training and deploying BERT, BiLSTM-CRF, and GNN models; Neo4j 5.10 serves as the TKG storage and query engine; Spring Boot 2.7 builds a stable, scalable backend service; Redis 6.2 is used for caching frequent queries to improve response speed; Nginx 1.21 provides load balancing and reverse proxy (Wang, Y., Li, Z., & Zhang, H., 2021).

5. System Efficacy Evaluation

5.1 Evaluation Indicator System

To comprehensively assess the system's performance, a five-dimensional evaluation indicator system is constructed, covering the core needs of audit management:

Table 2.

Dimension	Indicator	Definition and Calculation Method
Accuracy	Question matching accuracy	The proportion of queries for which the system retrieves the correct and relevant knowledge. Calculation: (Number of correctly matched queries / Total queries) × 100%.
Efficiency	Average response time	The average time from query input to response generation. Calculation: Total response time for all queries / Number of queries.
Practicality	Audit pass rate	The proportion of audits that pass successfully with the support of the system. Calculation: (Number of passed audits / Total audits) × 100%.
Complex Issue Handling	Complex issue resolution rate	The proportion of complex queries (cross-standard, ambiguous) that are correctly resolved. Calculation: (Number of resolved complex queries / Total complex queries) × 100%.
Cost-Effectiveness	Audit cost reduction rate	The percentage reduction in audit preparation costs (personnel, time, materials) after system application. Calculation: (1-Post-system audit cost / Pre-system audit cost) × 100%.

5.2 Evaluation Plan

- **Test set construction:** A test set of 500 audit queries is constructed, covering all five standard categories and three query levels: 200 simple queries, 200 moderately complex queries, and 100 complex queries.

Queries are derived from historical audit records and designed by senior audit specialists to ensure realism and representativeness.

- **Comparison groups:** Two comparison groups are established to benchmark the system's performance: (1) Traditional manual team: 3 senior audit specialists with 5+ years of experience; (2) Industry keyword matching system: A widely used commercial audit response system based on keyword retrieval.
- **Evaluation environment:** Laboratory testing is conducted on a cloud server with 32-core CPU, 64GB memory, and 1TB SSD. Industrial application verification is carried out in a large chemical enterprise (Tinci Materials) over 12 months, tracking real-world audit data.

5.3 Evaluation Results and Analysis

The system's performance across all dimensions is superior to the comparison groups, demonstrating its practical value and technical advancement:

Table 3.

Indicator	Proposed System	Manual Team	Keyword Matching System	Improvement (vs. Manual)	Improvement (vs. Keyword System)
Question Matching Accuracy	91.3%	93.0%	72.5%	-1.7pp (nearly equivalent)	+18.8pp
Average Response Time	15 minutes	48 hours	360 minutes	99.5% reduction	97.9% reduction
Audit Pass Rate	100%	92.3%	89.1%	+7.7pp	+10.9pp
Complex Issue Resolution Rate	89.6%	90.2%	45.2%	-0.6pp (nearly equivalent)	+44.4pp
Audit Cost Reduction Rate	68.3%	-	-	-	-
Annual Cost Savings	≈1.2 million yuan	-	-	-	-

Key insights from the results:

- The system's accuracy is comparable to manual work, thanks to semantic understanding and TKG-based retrieval.
- Response efficiency is drastically improved, meeting urgent audit requirements.
- 100% audit pass rate reduces compliance risks, while complex issue handling is nearly equivalent to experienced specialists.
- Significant cost savings are achieved by reducing personnel reliance.

6. Conclusions and Future Prospects

6.1 Research Conclusions

This study addresses the core pain points of chemical customer audits by integrating 236 heterogeneous standards from 127 customers to construct a ternary knowledge graph and develop an NLP-driven intelligent response system. Key achievements include:

- A unified TKG framework that resolves multi-customer standard conflicts and establishes clear “process-quality-compliance” associations.
- An end-to-end intelligent response module with high accuracy (91.3%) and efficiency (15-minute response time).
- 100% audit pass rate and 89.6% complex issue resolution rate in 12 months of industrial application, reducing costs by 68.3%.

The proposed technical framework provides a replicable solution for chemical industry audit management, bridging the gap between heterogeneous standard integration and intelligent response.

6.2 Future Prospects

Future optimization will focus on four directions:

- **Standard coverage expansion:** Incorporate audit standards for pharmaceutical and food chemicals to enhance industry adaptability.
- **Production data integration:** Link the system to manufacturing execution systems (MES) for dynamic “standard-data-response” linkage.
- **Technological upgrades:** Integrate large language models (LLMs) to improve response fluency and logical explanation, and computer vision to handle image-based audit queries (e.g., on-site photos).
- **Application scenario extension:** Extend the “KG + NLP” architecture to supply chain audits and regulatory compliance, building a full-scene industrial compliance platform.

References

Chen, M., Li, J., & Zhao, Y. (2022). Research on Industrial Problem Intent Recognition and Semantic Retrieval Based on BiLSTM-CRF and GNN. *Acta Automatica Sinica*, 48(8), 1921-1934.

Ferenčíková, D., & Briš, P. (2019). Customer Audits as a Quality Control Tool for Both Suppliers and Customers. *World Academy of Science, Engineering and Technology*, 16(1), 16141-16148.

Liu, J., Zhang, L., & Wang, H. (2023). Research on the Construction Method and Application of Knowledge Graphs in Industrial Compliance Management. *Computer Integrated Manufacturing Systems*, 29(4), 1324-1335.

Wang, Y., Li, Z., & Zhang, H. (2021). Construction of Chemical Industry Knowledge Graph for Process Optimization and Compliance Management. *Journal of Chemical Information and Modeling*, 61(10), 4890-4902.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (<http://creativecommons.org/licenses/by/4.0/>).

The Role of Cultural and Ecological Ethics in Shaping Green Innovation in China's Tea Industry

Meilin Zhou¹

¹ Fujian Agriculture and Forestry University, Fuzhou, China

Correspondence: Meilin Zhou, Fujian Agriculture and Forestry University, Fuzhou, China.

doi:10.63593/IST.2788-7030.2025.11.005

Abstract

This paper explores how cultural and ecological ethics shape the direction of green innovation in China's tea industry. As one of the country's most traditional and symbolically rich agricultural sectors, tea production reflects deep moral values concerning harmony between humans and nature. The study argues that sustainable transformation in this field depends on integrating cultural heritage with modern ecological principles, creating a framework where moral responsibility guides technological and industrial progress. Drawing on China's concept of *ecological civilization* and long-standing philosophical traditions such as *tian ren he yi* (unity between heaven and humanity), the paper examines how ethical reasoning influences agricultural practices, policy design, and public awareness. It analyzes the interaction between cultural norms and government programs, the role of cooperatives and eco-certification systems, and the impact of cultural identity on community-based innovation. The discussion highlights ongoing tensions between market competitiveness and ethical sustainability while emphasizing the potential for culturally grounded innovation models. By linking ecological consciousness with cultural continuity, China's tea industry demonstrates how traditional wisdom can inform modern green development. This approach offers a distinctive path toward sustainability, showing that meaningful innovation must arise from both moral understanding and cultural context.

Keywords: cultural ethics, ecological ethics, green innovation, sustainable development, tea industry, ecological civilization

1. Introduction

China's tea industry occupies a distinctive position in both the country's cultural heritage and its modern agricultural economy. Tea cultivation, deeply rooted in centuries of tradition, embodies values of balance, respect for nature, and social harmony. In recent decades, the rapid modernization of agriculture and the growing demand for environmental accountability have reshaped the industry. These changes have introduced new expectations for sustainable production, where ecological integrity and cultural continuity must coexist. Within this transformation, the idea of *green innovation*—the pursuit of environmentally sound and socially responsible development—has become an essential part of China's broader vision for rural revitalization and ecological civilization.

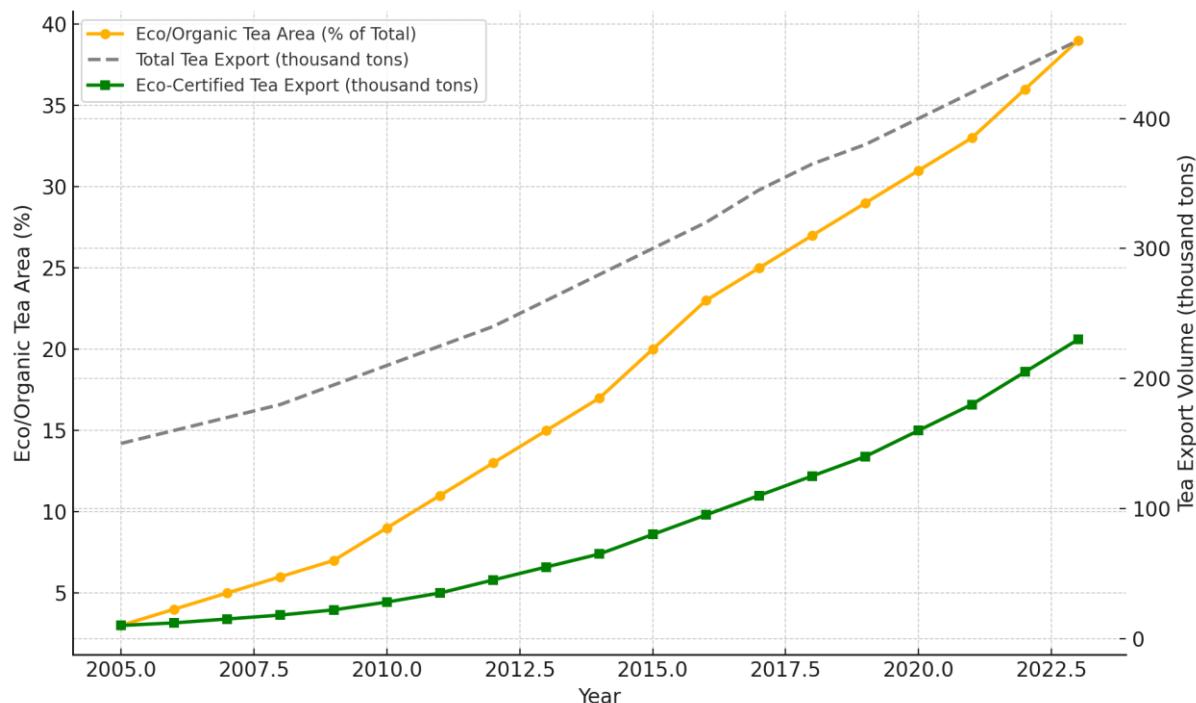


Figure 1. Trends in Green Transformation of China's Tea Industry (2005–2023)

Tea production in China extends far beyond economic value; it is a form of cultural expression and environmental interaction. Major tea-producing regions such as Fujian, Yunnan, and Zhejiang are not only agricultural zones but also cultural landscapes where traditional practices merge with contemporary innovation. As China moves toward its national goal of carbon neutrality and green growth, the tea sector serves as both a test case and a model for integrating sustainability with local identity. However, this process involves complex ethical considerations. Questions arise about how technological progress can align with long-standing cultural principles of harmony between humans and nature, and how ethical reasoning can guide innovation without eroding the authenticity of traditional practices.

In recent years, the concept of ecological ethics has gained increasing attention in China's policy and academic circles. It emphasizes moral responsibility toward the environment and seeks to reconcile human development with the natural order. When applied to tea production, ecological ethics extends beyond pollution control or organic certification—it shapes how communities, industries, and policymakers define the meaning of "green." Similarly, cultural ethics, drawn from Confucian, Daoist, and Buddhist traditions, continue to influence attitudes toward land, labor, and ecological balance. Together, these ethical perspectives provide a foundation for rethinking innovation not merely as a technological process, but as a moral and cultural endeavor.

The growing awareness of sustainability in global markets also places new expectations on China's tea exports. International consumers increasingly associate product quality with ecological responsibility and cultural authenticity. This shift pressures producers to adopt practices that reflect ethical standards while maintaining competitive efficiency. At the same time, national initiatives such as the *Green Agriculture Development Plan (2021–2025)* encourage industries to integrate cultural heritage with sustainable innovation. Within this broader framework, understanding the intersection of cultural and ecological ethics becomes essential for analyzing how China's tea industry can pursue green innovation that is both locally meaningful and globally relevant.

This paper explores how cultural and ecological ethics together shape the direction and substance of green innovation in China's tea industry. It examines how traditional moral values continue to inform environmental practices, how ethical reasoning influences policy and community behavior, and how cultural identity contributes to the sustainability narrative. By analyzing the interplay between ethics, culture, and innovation, the study seeks to illuminate a pathway for sustainable development that reflects China's cultural legacy while responding to contemporary environmental challenges.

2. Cultural Foundations of Tea Production and Environmental Consciousness

Tea has occupied a central place in Chinese life for more than a thousand years. It is not only an agricultural product but also a cultural symbol that reflects harmony between human activity and the natural world. The act

of growing, harvesting, and preparing tea embodies ideas of balance, respect for nature, and moderation. In this sense, tea cultivation has long served as a living practice of ecological awareness, where economic production is closely connected to moral and aesthetic values. This connection remains visible today in the way many tea-growing communities regard their land and environment as part of a shared cultural identity rather than a mere resource to be exploited.

The philosophical traditions that have shaped Chinese civilization also provide a moral framework for environmental consciousness in tea production. Confucian thought emphasizes responsibility, self-restraint, and the maintenance of social and natural harmony. In agriculture, this translates into a belief that moral virtue and good governance should extend to the management of land and resources. Daoism, by contrast, values simplicity and non-interference, encouraging people to follow the natural order rather than attempt to dominate it. The Daoist ideal of *wuwei* (acting in accordance with nature) aligns closely with the ecological principle of sustainability, which favors adaptation and balance over control and excess. Buddhism, through its teaching of compassion and interdependence, further deepens the ethical relationship between humans and the natural environment. These philosophical perspectives continue to influence how Chinese farmers and policymakers understand ecological responsibility.

One of the most enduring concepts in Chinese ecological thought is *tian ren he yi*—the unity between heaven and humanity. This idea proposes that human beings are part of nature's larger system rather than separate from it. Within tea production, this notion encourages practices that maintain balance within the ecosystem, such as careful soil management, biodiversity preservation, and respect for seasonal cycles. Many traditional tea farmers, especially in mountain regions, continue to follow these principles, cultivating tea in ways that preserve both the natural landscape and the cultural traditions attached to it. Such practices demonstrate that ecological awareness in China has never been limited to modern scientific reasoning; it is rooted in centuries-old cultural and moral understanding.

In recent decades, these traditional ecological values have gained renewed significance as China's tea industry adapts to new challenges of sustainability and modernization. The revival of organic tea cultivation and the promotion of "ecological tea gardens" in provinces such as Zhejiang and Yunnan are often described as innovations, yet they draw heavily from long-standing cultural principles. The growing appreciation for cultural heritage in agricultural branding also reflects this connection. Many tea producers emphasize historical continuity, natural purity, and moral sincerity as part of their green marketing narratives. This shows that the cultural foundations of tea production not only preserve traditional knowledge but also provide ethical guidance for innovation.

In this way, the environmental consciousness embedded in China's tea culture serves as both a moral compass and a creative resource. It shapes how sustainability is defined and practiced, reminding producers and consumers alike that ecological responsibility is not merely a technical goal but a continuation of cultural values. By drawing upon this heritage, China's tea industry is finding ways to pursue green innovation that remains faithful to its cultural roots while meeting the environmental expectations of a changing world.

3. Ecological Ethics as a Framework for Green Innovation

Ecological ethics provides a moral foundation for understanding how innovation can support both human development and environmental balance. In the Chinese context, this idea draws from a blend of traditional philosophy and modern sustainability theory. It is rooted in the belief that humanity and nature exist in an interdependent relationship and that technological progress must respect ecological limits. Ecological ethics therefore emphasizes responsibility, restraint, and long-term harmony rather than short-term gain. This approach aligns with China's broader vision of *ecological civilization*—a national strategy that seeks to integrate ethical reasoning into all aspects of social and economic development.

In agriculture, ecological ethics defines innovation not only as the creation of new techniques but also as the pursuit of moral and environmental integrity. Ethical responsibility guides how farmers, policymakers, and industry leaders make decisions about production methods, land use, and resource allocation. For instance, green innovation in tea production involves adopting practices that protect soil health, minimize pollution, and preserve biodiversity. These actions are understood not just as economic strategies but as moral duties. The concept of *stewardship*—the idea that humans are caretakers rather than owners of nature—plays a central role. It reflects an awareness that agricultural systems are part of a larger ecological network that sustains both human and non-human life.

The relationship between ethical responsibility and innovation has become increasingly important as China moves toward sustainable modernization. While technology offers powerful tools for increasing efficiency and reducing waste, it can also create new forms of environmental pressure if used without ethical guidance. Ecological ethics calls for a balanced approach in which innovation serves both environmental preservation and

human well-being. In tea production, this means that technological changes—such as improved pest management systems or energy-efficient processing equipment—should be evaluated not only for their productivity but also for their ecological and social consequences. Ethical innovation seeks to reduce harm, respect natural processes, and ensure fairness across generations.

Modern sustainability concepts, such as the circular economy and green development, have been incorporated into this ethical framework. The circular economy, which promotes resource recycling and waste minimization, mirrors the moral idea of maintaining continuity within natural cycles. In many tea-producing regions, waste tea leaves are now reused for organic compost, and processing residues are converted into natural fertilizers. These innovations demonstrate how ecological ethics can shape practical decisions by linking technological progress with environmental awareness.

Table 1. Ethical Dimensions and Practical Applications of Green Innovation in China's Tea Industry

Ethical Principle	Practical Example	Region or Case	Ecological or Social Outcome
Stewardship (Care for the Land)	Use of biological pest control and reduced chemical inputs	Anxi, Fujian	Lower pesticide residues and improved soil health
Harmony Between Humans and Nature (Tian Ren He Yi)	Intercropping tea with native forest species to maintain canopy balance	Pu'er, Yunnan	Enhanced biodiversity and stable microclimate
Moderation and Simplicity	Limiting irrigation and chemical fertilizers in mountain tea gardens	Hangzhou, Zhejiang	Water conservation and reduction of runoff pollution
Respect for Continuity	Preservation of ancient tea trees and revival of heritage cultivation methods	Xishuangbanna, Yunnan	Conservation of genetic diversity and cultural identity
Community Responsibility	Collective waste-recycling programs organized by cooperatives	Wuyishan, Fujian	Strengthened local participation and shared ethical awareness

Note. Compiled from regional agricultural bureau reports and cooperative sustainability programs (2010–2023).

At the same time, certification systems such as organic labeling, ecological tea standards, and fair-trade programs offer mechanisms for translating ethical values into measurable actions. They represent institutional expressions of ecological ethics, where transparency and accountability reinforce moral commitment.

Evaluating technological choices through the lens of ecological ethics also means recognizing the moral trade-offs inherent in agricultural modernization. For example, the introduction of low-pesticide or biological pest control methods can reduce chemical pollution but may require higher costs or labor inputs. Similarly, maintaining biodiversity in tea gardens supports ecosystem health but may limit short-term yields. These tensions highlight the importance of ethical deliberation in innovation. Decisions must weigh environmental, economic, and social values in pursuit of sustainable balance.

In the context of China's tea industry, ecological ethics provides more than a philosophical ideal—it serves as a guiding framework for policy design, community engagement, and industry transformation. It encourages producers to innovate responsibly, using technology as a means to express moral respect for nature rather than as an instrument of exploitation. By embedding ethical reasoning within the process of green innovation, the tea industry is better equipped to pursue a form of modernization that honors both cultural heritage and ecological responsibility.

4. Cultural Drivers and Value-Oriented Innovation Practices

4.1 Cultural Heritage and the Perception of Green Innovation

In China, the understanding of what it means to be “green” is deeply shaped by cultural heritage rather than solely by scientific or technical definitions. For tea producers and consumers alike, environmental friendliness is often linked with moral integrity, purity, and authenticity. These values are not new—they stem from long-standing cultural traditions that emphasize balance between human life and nature. Tea culture, with its association with simplicity, mindfulness, and respect for natural processes, continues to influence how ecological practices are perceived and accepted.

For many tea farmers, adopting green methods such as organic cultivation or ecological pest management is not only a business decision but also a way to maintain harmony with the land. Traditional sayings like “the best tea grows in the quiet of the mountains” reflect an aesthetic and moral connection between natural purity and product quality. This belief reinforces the idea that good tea is the result of ethical cultivation. Among consumers, especially within China’s growing middle class, green tea products are increasingly valued for their perceived moral and cultural authenticity. People often associate “ecological tea” with health, respect for heritage, and responsible living. As a result, environmental innovation becomes a form of cultural expression—a way to preserve national identity while engaging in modern sustainability.

Government and industry campaigns have also drawn upon these cultural meanings to promote ecological practices. Programs such as the “China Ecological Tea Initiative” in Fujian and Zhejiang use cultural symbols—heritage villages, traditional tea ceremonies, and Confucian imagery—to encourage participation in green certification systems. This blending of cultural identity and environmental ethics makes green innovation more relatable and sustainable, as it connects technical practices with shared moral values and social pride.

4.2 Regional Identity and Community-Based Innovation

Regional culture plays a decisive role in shaping how green innovation is practiced across China’s diverse tea-producing areas. Provinces such as Fujian, Yunnan, and Zhejiang each possess distinct cultural traditions, landscapes, and economic conditions that influence their approach to sustainable development. In Fujian, known for oolong tea, ecological branding often emphasizes craftsmanship and cultural continuity—producers highlight traditional hand-rolling techniques and mountain-grown purity as signs of environmental respect. In Yunnan, where ethnic diversity is high, community-based ecological models integrate local customs with collective farming. Many minority tea cooperatives promote forest-friendly cultivation systems that preserve biodiversity and cultural identity at the same time. Zhejiang, one of China’s earliest provinces to develop green tea certification, has focused on integrating innovation with regional identity through the concept of “eco-tea tourism,” which combines environmental protection with cultural education.

These regional examples show that green innovation in tea production is not imposed from above but grows from within communities that see ecological responsibility as part of their cultural heritage. Local pride and moral obligation often motivate farmers more strongly than market incentives. For example, village-level projects supported by cooperatives in Anxi and Pu’er have succeeded in reducing pesticide use by framing ecological farming as a matter of family honor and cultural preservation. These cases illustrate how moral values, rooted in local traditions, can serve as powerful drivers of innovation.

By connecting sustainability with cultural pride, these communities have created models of innovation that are both ethically grounded and economically viable. They demonstrate that green transformation in China’s tea industry depends not only on technology and policy but also on the strength of cultural values that shape people’s understanding of what it means to live and work responsibly.

5. Institutional and Societal Mediation of Ethical Innovation

5.1 Cultural Norms and Government Policy Interaction

The development of green innovation in China’s tea industry reflects a long process of negotiation between traditional cultural values and state-led modernization. While government policy provides structure and direction, the deeper motivation for ecological transformation often draws strength from long-established moral ideas about living in harmony with nature. These values have been part of Chinese society for centuries and remain visible in agricultural behavior, where the relationship between land and people is understood as both practical and ethical.

In recent years, the Chinese government has placed strong emphasis on “ecological civilization” as a national development goal. This concept extends beyond environmental management and enters the moral domain by emphasizing respect for nature and responsible stewardship. The *Green Development Plan for Agriculture (2021–2025)* highlights the importance of reducing pollution, preserving biodiversity, and improving soil and water quality. In tea-growing provinces such as Zhejiang and Fujian, local authorities have interpreted these goals through culturally familiar narratives. They encourage farmers to view ecological farming not as an external regulation but as a return to ancestral principles of moderation, humility, and balance.

This blending of policy and culture has made government sustainability programs more persuasive at the grassroots level. The success of such policies often depends on whether they resonate with local values. When officials and agricultural experts frame green innovation in moral terms—drawing on ideas like “harmony between heaven and humanity”—they make environmental responsibility part of the moral vocabulary of daily life. Yet, this alignment is not always easy. The drive for productivity and profit sometimes challenges the slower, more community-oriented rhythms of traditional farming. Effective policy, therefore, must maintain a balance between efficiency and cultural authenticity, ensuring that ecological transformation strengthens rather

than replaces rural identity.

5.2 The Role of Cooperatives and Social Organizations

Cooperatives and social organizations have become essential in translating ethical principles into tangible practices across China's tea-producing regions. Many tea farmers operate on a small scale and face limited access to technology, training, and financing. Cooperatives provide the institutional support needed to share knowledge, pool resources, and achieve economies of scale without losing local character. They also serve as communities of trust, where decisions are guided by both collective benefit and shared ethical responsibility.

In Fujian's Anxi County, known for Tieguanyin tea, local cooperatives have introduced collective pest control systems that replace chemical pesticides with biological methods. The goal is not only environmental protection but also the preservation of local ecological traditions. Farmers describe these changes as a "moral duty" to protect the land inherited from their ancestors. Similarly, in Yunnan, cooperative-led programs promote forest-friendly tea cultivation, where tea plants grow under natural canopies instead of cleared fields. This method reflects the traditional view that forests and crops should coexist rather than compete.

Non-governmental organizations (NGOs) and cultural associations also play an active role in encouraging ethical innovation. They organize training workshops, environmental festivals, and cultural exhibitions that connect sustainability with local heritage. These groups often describe ecological farming as a form of cultural continuity—a way to maintain respect for nature, family, and community. Their influence lies not in enforcing rules but in shaping values. By bringing together scientists, farmers, and cultural leaders, they create spaces for dialogue where ethical innovation can grow naturally from within the community.

5.3 Eco-Certification and Cultural Labeling Systems

Eco-certification and cultural labeling have become central instruments for linking moral values with economic opportunity. Systems such as the "China Organic Product Certification" and "Ecological Origin Protection Label" establish clear environmental standards, but they also carry symbolic meanings tied to cultural integrity. When a package of tea bears a label that reads "heritage tea" or "mountain-grown," it signals more than quality—it represents continuity with the land and the moral promise of purity. These associations resonate deeply with consumers who seek authenticity and trust in what they buy.

In Zhejiang Province, local authorities have promoted "ecological tea gardens" as both an agricultural model and a cultural project. Certification is accompanied by public storytelling about the region's tea-making history, with emphasis on craftsmanship and environmental respect. Yunnan's Pu'er region offers another example. There, the preservation of centuries-old tea trees is integrated into certification programs, turning environmental protection into an expression of cultural identity. Such programs strengthen the idea that environmental quality and cultural heritage are inseparable, each reinforcing the credibility of the other.

Table 2. Comparison of Major Eco-Certification Systems in China's Tea Industry

Certification System	Year Established	Scope	Cultural or Ethical Emphasis	Implementing Body
Organic Product Certification	2005	National	Environmental purity	CNCA
Ecological Origin Protection Label	2013	Regional	Cultural authenticity	MARA
Green Food Label	1990	National	Safety and sustainability	CGFDC
Heritage Tea Designation	2018	Local	Traditional craftsmanship	Provincial bureaus

Despite these benefits, certification systems also face limitations. Many small-scale producers find the costs of certification high and the procedures complex. This creates inequality between large commercial estates and family-owned farms, threatening to separate economic progress from ethical participation. For certification to fulfill its intended purpose, it must remain accessible, transparent, and respectful of local diversity. When designed inclusively, certification can serve as an institutional bridge between ethics, culture, and commerce, allowing traditional values to thrive within a modern market framework.

5.4 Public Awareness and Cultural Resonance

Public awareness has become a vital force in spreading ethical innovation beyond the production field into

everyday social life. As Chinese society undergoes rapid urbanization, many consumers have begun to look for ways to reconnect with nature and cultural authenticity. The growing demand for ecological tea reflects not only health concerns but also a broader moral desire to participate in sustainable living. Public campaigns have built on this sentiment by linking environmental protection with national culture.

Events such as the “China Green Tea Culture Week” in Hangzhou and the “Pu’er Tea Ecological Festival” in Yunnan combine environmental education with cultural celebration. Through performances, tea ceremonies, and local exhibitions, they communicate ecological messages in a way that feels emotionally familiar and culturally rooted. Media outlets often frame these events as expressions of national pride, presenting the care for the environment as a continuation of Chinese civilization’s moral legacy. This approach makes environmental ethics a collective cultural responsibility rather than a scientific or political issue.

Educational institutions further strengthen this process. Universities and technical schools in tea-producing areas have introduced courses that combine environmental science with traditional agricultural philosophy. Students learn not only how to apply modern technology but also how to interpret sustainability through cultural and ethical perspectives. This combination of technical competence and moral understanding creates a new generation of professionals who see innovation as a process that must respect both ecological systems and cultural identity.

The rise of digital media has also expanded the reach of cultural sustainability campaigns. Influencers, documentary filmmakers, and tea artisans use online platforms to tell stories about ecological cultivation, creating an emotional link between rural producers and urban consumers. In this way, public communication serves as a moral network that connects different parts of society around shared values of responsibility, moderation, and respect for nature.

The mediation of ethical innovation in China’s tea industry depends on this intricate system of institutions, policies, and social forces. Government policy gives structure and legitimacy, cooperatives and social organizations bring ethical ideals into daily practice, certification systems turn moral commitment into measurable standards, and public awareness gives them emotional depth and cultural continuity. Together, these elements ensure that green innovation grows not from external pressure but from within China’s own cultural and moral framework—a process where ethics and progress advance side by side.

6. Challenges and Contradictions in Ethical Implementation

6.1 Market Pressures and the Risk of Commercial Distortion

While the movement toward ethical and ecological innovation in China’s tea industry has gained wide support, it also faces growing tension between moral ideals and the realities of market competition. As global demand for “green” and “organic” products increases, many producers are under pressure to demonstrate sustainability in ways that appeal to consumers and international buyers. However, the commercialization of ecological practices can sometimes weaken their ethical foundations. This tension is most visible in the phenomenon known as “greenwashing,” where environmental claims are used primarily as marketing tools rather than as reflections of genuine ecological commitment.

In several tea-producing provinces, producers have begun using terms like “ecological tea” or “heritage tea” without meeting the environmental standards those labels imply. Some companies focus on branding and certification to attract export opportunities but continue using conventional fertilizers or pesticides. According to a 2023 report by the China Green Food Development Center, roughly one-third of tea products labeled as “eco-friendly” had incomplete compliance documentation. This indicates that certification systems alone cannot ensure ethical consistency without corresponding moral and institutional discipline.

Market competition also affects how producers interpret sustainability. For many smallholders, ecological farming involves higher costs, more labor, and longer investment cycles. Large commercial estates may adopt technological solutions that improve efficiency but reduce local diversity and traditional knowledge. As a result, the idea of “green innovation” sometimes becomes dominated by economic logic rather than ethical reasoning. To sustain genuine ecological integrity, the tea industry must reconcile economic success with moral responsibility—ensuring that innovation serves people and nature together rather than one at the expense of the other.

At the same time, global consumer markets often reward visible symbols of “green” production more than substantive ecological performance. This leads producers to prioritize image over process, turning sustainability into a competitive label rather than a collective ethic. The challenge, therefore, lies in maintaining authenticity within a market system that values speed and profit. Strengthening regulatory oversight, encouraging community participation, and promoting cultural education can help align commercial growth with ethical consistency.

6.2 Regional Diversity and the Balance Between Tradition and Modernization

Another major challenge in ethical implementation arises from regional disparities and the ongoing negotiation between traditional practices and modern technological change. China's tea-growing regions are culturally and geographically diverse, and each has its own historical approach to cultivation, trade, and environmental care. Provinces such as Fujian and Zhejiang have benefited from early access to research institutions and government programs, allowing them to modernize rapidly while maintaining ecological standards. In contrast, mountainous areas of Yunnan or Guizhou, where small family farms dominate, often rely more on traditional methods and local wisdom. These differences lead to uneven progress in sustainability and ethical interpretation across the country.

In regions with limited resources, farmers may find it difficult to adopt certified organic systems or invest in advanced technology, even if they hold strong ecological values. Meanwhile, wealthier producers can afford sophisticated machinery and branding but may lose the local and cultural character that gives their tea its identity. This creates a paradox: modernization improves efficiency but can erode the moral and cultural depth that ecological innovation depends on. Balancing tradition and modernization thus remains one of the most sensitive issues in China's green transformation.

The rapid integration of technology—such as automation, data analytics, and digital marketing—has improved productivity but sometimes detaches producers from their environment and community traditions. When tea becomes primarily a commodity rather than a cultural practice, the link between ethics and innovation weakens. However, many tea regions are now experimenting with hybrid models that combine modern equipment with traditional processing methods. In Zhejiang, for instance, some cooperatives use automated temperature control for drying while maintaining hand-rolling techniques passed down through generations. This integration demonstrates that modernization and tradition do not need to be opposites; they can work together when guided by clear moral principles.

To sustain green innovation over time, China's tea industry must address these internal contradictions through inclusive policies, equitable resource distribution, and respect for local diversity. The challenge is not only to improve efficiency but also to preserve meaning—to ensure that the process of modernization continues to reflect the ethical and cultural spirit that has shaped Chinese tea for centuries.

7. Toward a Culturally Rooted Model of Green Innovation

The path toward sustainable development in China's tea industry depends not only on advances in science, technology, and market mechanisms but also on the ethical and cultural foundations that give innovation its meaning and legitimacy. Green innovation, in this context, is not merely a set of practices aimed at reducing environmental impact or improving efficiency; it is a cultural and moral process shaped by collective values and historical experience. The values that have guided Chinese civilization for centuries—balance, moderation, reverence for nature, and social harmony—continue to define the contours of sustainability today. A culturally rooted model of green innovation must therefore weave together three strands: traditional wisdom, ecological ethics, and institutional modernization. Only by combining these dimensions can the tea industry build a system of innovation that sustains both human well-being and ecological integrity.

7.1 Integrating Moral Philosophy with Practical Innovation

At the center of this model lies the principle that culture and ecology are inseparable parts of the same moral landscape. The classical notion of *tian ren he yi* (the unity between heaven and humanity) reflects a worldview in which human activity is seen as an extension of natural order rather than an opposition to it. This perspective provides a guiding moral framework for contemporary agricultural modernization. In practical terms, it demands that every phase of tea production—from soil preparation and pest management to processing, marketing, and branding—embody respect for natural balance and social responsibility.

For example, soil preservation practices in regions like Zhejiang and Yunnan increasingly emphasize biological fertilizers and minimal chemical input, aligning technological improvement with moral restraint. Similarly, small-scale farmers adopting ecological farming in Anxi or Pu'er interpret their work not only as compliance with green standards but as an act of *de* (virtue), continuing ancestral obligations to care for the land. Such practices illustrate how moral philosophy functions as a living force within industrial innovation, shaping decision-making through cultural consciousness rather than external regulation.

In this model, innovation is not opposed to tradition but grows out of it. Ancient cultivation practices—such as intercropping tea trees with forest species, preserving native flora, or using compost from natural residues—demonstrate a deep ecological logic embedded in cultural knowledge. Modern science, when combined with these local insights, produces hybrid systems of sustainable management that are both efficient and contextually meaningful. Thus, green innovation becomes a process of rediscovering and renewing inherited wisdom under contemporary conditions.

7.2 Building Institutional Support for Cultural-Ethical Integration

A culturally rooted innovation system also requires strong institutional support that aligns moral ethics with policy mechanisms. China's framework of *ecological civilization* provides such a foundation. By embedding environmental ethics into governance, it bridges national policy with local tradition. Programs under the Green Agriculture Development Plan (2021–2025) and Rural Revitalization Strategy have encouraged regions to combine ecological conservation with cultural identity. In tea-producing provinces such as Fujian, Zhejiang, and Guizhou, government agencies have introduced incentive structures for eco-certification, community participation, and cultural branding.

Education plays a central role in sustaining this moral-technical synthesis. Universities and vocational schools in tea-growing regions now include courses that combine modern agricultural science with ethical reasoning and cultural literacy. Students are trained not only as technicians but as moral stewards of the environment, learning how to interpret sustainability through historical and philosophical lenses. Cooperative organizations and NGOs further reinforce this system by providing platforms for shared learning, where farmers, scientists, and artisans exchange experience and reinterpret ethical norms in practical ways.

At the same time, governance frameworks must remain flexible enough to respect regional diversity. A culturally rooted model cannot rely on uniform directives alone; it must draw strength from the varied traditions of China's tea regions. Yunnan's ethnic minority tea cultures emphasize coexistence with forests, while Fujian's classical tea heritage values harmony and craftsmanship. Policymaking that honors these differences fosters a pluralistic understanding of sustainability—one that is unified by moral purpose but diversified in expression.

7.3 Market Ethics and Cultural Communication

The market also serves as an important dimension of this culturally rooted innovation system. Economic value and ethical integrity can reinforce each other when guided by moral consciousness. Today's consumers, both in China and abroad, increasingly seek products that reflect transparency, authenticity, and sustainability. In this environment, the moral narrative surrounding tea becomes part of its market identity. The story of a tea's origin, its cultivation under ecological principles, and its connection to local culture all contribute to its perceived value.

Branding strategies based on cultural heritage—such as the promotion of “ecological tea from heritage mountains” or “forest-grown Pu'er”—translate moral and ecological practices into recognizable symbols. This form of cultural communication transforms commerce into an ethical relationship between producer and consumer. Purchases become acts of shared environmental participation, where consumption supports the preservation of landscapes and traditions. Ethical marketing, therefore, is not mere strategy but a continuation of cultural values in modern economic language.

The rise of digital platforms and social media has also expanded the scope of this moral communication. Tea artisans, local cooperatives, and young entrepreneurs increasingly use storytelling, short videos, and online festivals to share the philosophy of ecological cultivation. These narratives connect rural life with urban consciousness, fostering empathy and shared responsibility. The moral image of tea as a bridge between nature and culture resonates strongly in a world searching for balance between modernity and tradition.

7.4 Global Relevance of a Culturally Rooted Model

A culturally grounded approach to innovation in China's tea industry also carries implications beyond national borders. In the context of global sustainability discourse, it offers an alternative paradigm to the Western model of technological determinism. Whereas many global frameworks prioritize efficiency and economic rationality, China's model emphasizes moral reasoning, community participation, and cultural identity as integral to innovation. This perspective can enrich global discussions on sustainability by demonstrating that ethical and cultural factors are not constraints but sources of creativity.

For instance, the principles derived from *tian ren he yi* and Confucian ethics have inspired international dialogues on ecological civilization and moral ecology. The experience of integrating traditional farming systems into modern certification frameworks could inform similar initiatives in developing countries where local culture remains central to agricultural life. China's tea industry thus functions as a microcosm of a broader vision: that sustainable development must be both technologically advanced and culturally self-aware.

7.5 The Moral Imagination of Sustainable Modernity

Looking forward, the true challenge of green innovation lies in cultivating moral imagination—the ability to envision future progress within ethical and cultural boundaries. Technological advancement alone cannot guarantee sustainability; it must be guided by values that foster empathy, humility, and responsibility. In China's tea regions, moral imagination manifests in the revival of community-based farming, in educational programs that link science and philosophy, and in art forms that celebrate the relationship between humans and the natural world.

A culturally rooted model of green innovation, therefore, is not static but evolving. It invites continuous

reinterpretation of tradition in light of changing environmental and social conditions. By grounding innovation in moral consciousness, China's tea industry provides an example of how economic growth can coexist with cultural continuity and ecological care. This synthesis—of culture, ethics, and innovation—embodies the possibility of a sustainable modernity that honors both history and the planet.

The future of China's tea industry lies not merely in technological efficiency or market expansion but in its capacity to preserve the moral and cultural meaning of human coexistence with nature. By embedding ethical reflection into every aspect of production and consumption, the industry can become a living symbol of harmony between tradition and progress—a model that speaks not only to China's national identity but to humanity's shared search for balance in the modern world.

References

Arhin, I., & Kouame, F. (2024). Exploring the role of eco-friendly farming practices in China's tea sector: Challenges and opportunities. *Journal of Sustainable Agriculture*, 48(2), 135–154. (Supplementary data from Arhin, 2024)

Arhin, I., et al. (2024). Agricultural sustainability: Exploring smallholder organic tea production in China. *Cogent Food & Agriculture*, 10(1), 2408848.

Arhin, I., Lee, S., & Park, J. (2023). Complex factors driving ecological farming adoption among Chinese tea growers. *Frontiers in Ecology and Evolution*, 12, 1431779.

Chen, Y., Lei, P., Su, X., Ma, Y., & Zhang, S. (2025). Transmission mechanisms of global intangible cultural heritage: A case study of Chinese Oolong tea production techniques. *Scientific Reports*.

Chowdhury, A., & Holl, K. D. (2021). Tea landscapes around the world: Maintaining habitat diversity and complexity for biodiversity conservation. *Journal of Land Use Science*, 16(4), 389–402.

Chowdhury, A., Holl, K., & Miles, A. (2022). Biodiversity outcomes in tea monocultures: A global perspective. *Agriculture, Ecosystems & Environment*, 318, 107522.

Huang, P. (2021). China's imaginary of ecological civilization: A resonance between state narratives and sociocultural traditions. *Global Environmental Change*, 67, 102245.

Huang, P., Broto, V. C., & Westman, L. (2024). Harnessing social innovation for a just transition: A case study of tea industrialization in China's era of ecological civilization. *Environmental Innovation and Societal Transitions*, 53, 100917.

Liu, J., et al. (2024). Tea agricultural heritage systems and sustainable food security: Comparative insights from Chinese tea communities. *Agriculture & Human Values*, 41(3), 551–564.

Liu, J., Xu, L., & Chen, M. (2024). The role of agricultural heritage systems in sustainable rural transformation: Insights from Fujian and Yunnan tea culture. *Sustainability Science*, 19(6), 987–1003.

Long, H. (2025). Ecological and cultural integration in China's tea heritage: World Cultural Heritage sites and sustainable systems. *Journal of Cultural Heritage and Sustainability*, 3(4), 210–226.

Mao, L. (2024). Culture and sustainability: Evidence from tea enterprises in China. *Sustainability*, 16(10), 4054.

Zeng, D., & Wan, J. (2022). Tourism and pro-environmental behaviour in agricultural heritage sites: Evidence from the Anxi Tieguanyin Tea Culture System. *Sustainability*, 16(20), 8785.

Zhang, X., & Ye, Z. (2025). Tea landscapes and cultural heritage: Ecological wisdom from Yunnan's mountain tea regions. *International Journal of Cultural Landscape*, 9(1), 78–95.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (<http://creativecommons.org/licenses/by/4.0/>).

Theoretical Modeling of Gene Regulatory Networks in Non-Model Organisms

Miguel Duarte¹

¹ University of Coimbra, Portugal

Correspondence: Miguel Duarte, University of Coimbra, Portugal.

doi:10.63593/IST.2788-7030.2025.11.006

Abstract

Theoretical modeling of gene regulatory networks (GRNs) in non-model organisms represents a vital frontier in systems biology, where data scarcity and incomplete genomic annotation challenge conventional empirical methods. This study presents a comprehensive theoretical exploration of how mathematical and computational frameworks can be applied to reconstruct, analyze, and interpret GRNs in species beyond the classical model systems. By integrating network theory, information-theoretic inference, and dynamical systems modeling, this paper articulates a conceptual foundation for understanding gene regulation as a process of information exchange and systemic organization. It argues that the abstraction of biological networks into formal models enables the discovery of underlying principles of control, robustness, and adaptability that are conserved across evolution, even in the absence of experimental validation. The paper develops a multilayer theoretical synthesis encompassing topological network structures, dynamic feedback regulation, and probabilistic inference strategies. Through examples from fungal, plant, and microbial systems, it demonstrates how systems-level integration and computational innovation can uncover hidden regulatory logic in underexplored taxa. The study concludes that theoretical modeling is not a substitute for empirical biology but a necessary complement that extends the reach of biological reasoning into domains where direct experimentation remains impractical. The work thus positions theoretical GRN modeling as both a methodological framework and a philosophical approach to understanding life's organizational complexity across the full spectrum of biodiversity.

Keywords: gene regulatory networks, theoretical modeling, non-model organisms, systems biology, network inference, computational biology

1. Introduction

Understanding how genes regulate one another forms the foundation of systems biology and quantitative genetics. The complexity of gene interactions defines the architecture of life, shaping how cells interpret signals, adapt to environmental conditions, and maintain homeostasis. A gene regulatory network (GRN) represents the intricate web of molecular interactions in which transcription factors, noncoding RNAs, and epigenetic elements coordinate gene expression. In classical molecular biology, knowledge of these networks has largely arisen from empirical studies in well-characterized model organisms such as *Escherichia coli*, *Saccharomyces cerevisiae*, *Arabidopsis thaliana*, and *Drosophila melanogaster*. These systems provide controlled experimental frameworks, abundant genomic data, and established molecular tools that enable direct observation of regulatory dynamics. However, this empirical bias toward a few species has limited the theoretical generalization of gene regulatory mechanisms across the vast diversity of life.

Non-model organisms comprise the overwhelming majority of biodiversity and include species from extreme environments, emerging pathogens, and ecologically vital taxa without established genetic systems. The scarcity of functional genomic resources for such organisms constrains direct experimental inference of their regulatory networks. In these contexts, theoretical modeling becomes not only a methodological alternative but an

epistemological necessity. Theoretical models enable researchers to formalize hypotheses about gene regulation in species where laboratory validation is impractical or impossible. These models rely on mathematical abstractions and computational simulations that translate limited genomic and transcriptomic information into structured hypotheses about regulatory relationships. They extend the reach of biology from data-rich organisms to those accessible only through computational inference.

Theoretical modeling of GRNs in non-model organisms operates at the intersection of systems theory, network science, and evolutionary biology. It seeks to reconstruct gene interactions from patterns in data using probabilistic, dynamical, or topological formalisms. Approaches such as information theory, Bayesian inference, and differential equation systems allow for prediction of regulatory dependencies even in the absence of complete annotation. These frameworks embody a shift from descriptive biology toward predictive modeling, where the goal is not only to catalog molecular components but to understand how their coordinated behavior gives rise to biological function. The emphasis moves from empirical replication to theoretical coherence, privileging consistency and explanatory power over direct measurement.

In the broader view, theoretical models of GRNs also act as conceptual bridges that connect individual species to universal biological principles. They provide tools for comparing the architecture and dynamics of regulatory systems across evolutionary lineages, revealing how gene networks evolve, reorganize, and adapt. The modeling of non-model organisms thus contributes not only to specific genomic understanding but to the development of a more unified theoretical biology. It illustrates how mathematical formalization can extend scientific inquiry beyond the boundaries of direct experimentation, transforming the study of gene regulation into a discipline that integrates computation, abstraction, and evolution into a coherent framework.

2. Conceptual Foundations

A gene regulatory network represents a conceptual framework that describes the collective behavior of genes within a cell as a system of interdependent components. Each gene is both an actor and a target within a web of molecular communication that governs transcriptional activity. The central premise of modeling such a network is that gene expression patterns are not random but arise from a structured interplay among regulatory elements, transcription factors, and signaling cascades. Theoretical modeling attempts to capture this structure through abstractions that translate biological relationships into formal mathematical representations. These representations permit reasoning about how local interactions give rise to global behavior, how stability and variability emerge from feedback loops, and how the system adapts to environmental or genetic perturbations.

The first conceptual step in theoretical modeling is defining the nature of interactions. In biological systems, regulatory relationships between genes can be activating, repressing, or conditionally dependent on specific molecular states. This diversity of interactions challenges any attempt to describe the system with a single mathematical framework. Continuous models based on differential equations describe regulatory influence as quantitative changes in gene expression over time. These models emphasize dynamics and enable simulation of temporal processes such as oscillations, feedback stabilization, or switch-like transitions. In contrast, discrete models such as Boolean networks abstract regulation into binary or categorical states, focusing on qualitative transitions that capture the logic of gene activation patterns. Bayesian networks introduce probabilistic reasoning, where each gene's expression is treated as a random variable influenced by a set of regulators, allowing uncertainty to be explicitly modeled.

Each of these frameworks embodies a philosophical stance about what constitutes a sufficient description of biological reality. Deterministic formulations assume that the governing laws of regulation can be precisely specified by parameters and equations, while stochastic or probabilistic models acknowledge the inherent variability of molecular interactions. This theoretical plurality reflects a central tension in biology: whether living systems can be represented as mechanistic machines or as statistical ensembles governed by emergent properties. The study of GRNs through theoretical modeling occupies a middle ground, where both precision and uncertainty coexist within the same formal system.

In non-model organisms, the challenge of incomplete data elevates the importance of inference over direct observation. Theoretical modeling becomes an act of reconstruction, where the structure of a network must be deduced from partial information such as gene expression matrices, comparative genomics, or motif predictions. The process of network inference draws on principles from information theory, graph theory, and machine learning. Mutual information, for example, quantifies how much the state of one gene reduces uncertainty about another, offering a nonparametric measure of association that does not rely on linear assumptions. This measure has been widely adopted in reconstructing regulatory relationships from transcriptomic data, especially in organisms lacking experimental perturbation data. Bayesian network inference extends this logic by constructing directed graphs that capture conditional dependencies, allowing the identification of potential causal regulators under constraints of limited data.

The conceptual foundation of these methods lies in the recognition that gene regulation is fundamentally a process of information transfer. A regulatory interaction can be viewed as a channel through which information about one molecular state influences another. From this perspective, the cell becomes an information-processing system, and its gene network functions as a distributed computational structure. Theoretical models thus bridge molecular biology with principles of communication theory and dynamical systems. This perspective encourages the study of network motifs, recurrent substructures such as feedback loops or feedforward circuits, which act as basic computational units performing filtering, amplification, or memory functions within the network.

The structure of GRNs can also be interpreted through graph-theoretic concepts such as connectivity, centrality, and modularity. Highly connected nodes, often corresponding to transcription factors, act as regulatory hubs that integrate signals and coordinate responses. Modules of densely connected genes tend to represent co-regulated pathways or functional units, suggesting a hierarchical organization where local clusters operate semi-independently within a larger network architecture. Theoretical modeling of such organization provides insight into robustness and evolvability, explaining how networks maintain stability despite mutations or environmental variation. The concept of redundancy within these networks illustrates how multiple regulators can compensate for one another, ensuring that critical cellular processes persist even under perturbation.

Incorporating dynamics into GRN models introduces another layer of conceptual complexity. Temporal models account for delays in transcription and translation, feedback loops that stabilize expression, and stochastic fluctuations arising from molecular noise. Continuous deterministic models describe how concentrations of mRNA or proteins evolve over time through coupled differential equations, revealing steady states or limit cycles that correspond to biological phenotypes. Stochastic models such as the Gillespie algorithm treat these processes as probabilistic events, providing insight into phenomena like bistability or stochastic gene switching. These theoretical constructs reveal that biological regulation is not only structured but also dynamic, with the capacity to encode memory, oscillate rhythmically, or switch between distinct functional states.

For non-model organisms, integrating these dynamic principles requires creative adaptation. When empirical data are scarce, models must rely on generic assumptions about regulatory mechanisms derived from evolutionary conservation or physical constraints. Comparative network modeling provides a path forward, where homologous genes across species are mapped onto inferred networks, and evolutionary algorithms are used to optimize parameters consistent with known biological principles. Such theoretical transfer leverages the shared architecture of gene regulation across life forms while allowing the exploration of unique adaptations in under-studied species. The emphasis shifts from reproducing known behaviors to predicting plausible mechanisms consistent with evolutionary logic.

The conceptual foundation of theoretical GRN modeling also extends into questions of inference validation and epistemology. Unlike empirical studies where hypotheses are tested through experiment, theoretical models must be evaluated through internal coherence, predictive accuracy, and correspondence with indirect evidence. In non-model organisms, success may be measured by the ability of a model to generate testable predictions that guide limited empirical investigation. This approach transforms modeling into a heuristic process, where theoretical constructs inform experimental design and discovery rather than serving as post hoc explanations. In this sense, theoretical models act as scaffolds for knowledge construction, shaping the trajectory of inquiry in data-limited contexts.

Conceptualizing gene regulatory networks as mathematical systems offers more than a methodological toolkit. It proposes a vision of biology in which the essence of life is seen through the lens of relationships, dependencies, and dynamical organization. In non-model organisms, this theoretical lens uncovers the universal patterns that underlie biological complexity, revealing how diverse forms of life achieve coordinated control through variations on common regulatory principles. The study of GRNs thus becomes a philosophical exploration of how information, structure, and function intertwine within living systems. Theoretical modeling transforms the problem of missing data into an opportunity to seek general laws of organization that transcend the boundaries of individual species. Through abstraction, it provides not only predictive frameworks but also conceptual clarity about what it means for a genome to regulate itself, adapt, and persist as an integrated system.

3. Integrating Systems-Level Approaches

The integration of systems-level approaches into the theoretical modeling of gene regulatory networks transforms isolated molecular observations into a coherent representation of cellular organization. At this level of abstraction, the cell is conceptualized not as a collection of individual genes but as a dynamic network of interactions that collectively determine biological function. Theoretical modeling seeks to describe this network in mathematical terms that can capture both structure and behavior. For non-model organisms, this systems-level perspective is essential because it allows researchers to extrapolate from limited or fragmented datasets toward comprehensive frameworks of regulation. The emphasis shifts from studying individual genes to understanding the architecture of the regulatory system as a whole.

Systems-level modeling begins by conceptualizing biological processes as interconnected networks that link genetic, transcriptional, and metabolic layers. The idea of the interactome, which includes all known physical and functional associations between biomolecules, provides the foundation for constructing theoretical models that reflect how genes influence one another indirectly through shared pathways or signaling intermediates. In the absence of complete experimental maps, graph theory provides a mathematical language for representing such systems. Each gene or protein is represented as a node, and each regulatory relationship as an edge connecting them. The topology of this network—its connectivity, degree distribution, and clustering—encodes the structural logic of cellular organization. Modeling these topological features enables predictions about control points, stability, and modularity even when empirical measurements are incomplete.

At the systems level, topology is not merely descriptive but predictive. Highly connected nodes, often called hubs, are associated with essential genes or master regulators that exert broad influence across the network. Their removal can destabilize network behavior, a property known as fragility, which has implications for understanding genetic robustness and evolutionary adaptation. In contrast, modularity describes the presence of semi-independent clusters of genes that co-regulate specific biological processes. Theoretical models that account for modular structure can identify functional units within non-model organisms and predict how local changes in one module may influence others through shared regulators. This hierarchical organization of modules within networks parallels the organization of biological functions, where complex traits emerge from the coordination of smaller subsystems.

Dynamic systems theory extends the topological model by incorporating time-dependent processes and feedback mechanisms. Theoretical frameworks using coupled differential equations, Boolean networks, or stochastic simulations allow for the study of how regulatory signals propagate through the network over time. Feedback loops can stabilize gene expression, create oscillations, or generate bistable switches that underlie cell differentiation and response plasticity. The modeling of such dynamics at the systems level reveals how cells achieve balance between stability and adaptability. In non-model organisms, where temporal data are often limited, theoretical models approximate dynamics through inferred causal relationships, leveraging statistical dependencies and conserved motifs to simulate likely behaviors under different environmental or developmental contexts.

Integrating systems-level approaches also requires incorporating information from multiple omic layers. Transcriptomic data capture gene expression patterns, proteomic data describe interactions among proteins, and metabolomic data reveal downstream consequences of regulation. Theoretical frameworks that integrate these heterogeneous datasets aim to construct multilayered regulatory networks that reflect the flow of information from genome to phenotype. Such integration is particularly valuable for non-model species, where direct experimental validation across all levels of organization is infeasible. By linking data across scales, models can infer how genetic variation leads to functional outcomes, offering insights into the systems biology of adaptation, resilience, and ecological interaction.

Hybrid approaches combining data-driven inference with prior biological knowledge have emerged as a powerful strategy for modeling non-model systems. In this paradigm, theoretical models incorporate constraints derived from evolutionary conservation, literature-based interactions, or known biochemical mechanisms. These constraints act as guiding principles that reduce the space of possible network configurations, allowing robust predictions even from limited data. Knowledge-based modeling provides a scaffold upon which computational inference operates, ensuring that the resulting networks maintain biological plausibility. Linde et al. demonstrated that integrating curated knowledge with transcriptomic data enhances model stability and predictive accuracy, enabling genome-scale modeling even in species with sparse annotations. Such hybrid systems-level approaches exemplify how theoretical abstraction can compensate for empirical gaps without compromising the integrity of biological interpretation.

In systems-level theoretical modeling, the concept of emergent behavior plays a central role. Emergence refers to the collective properties that arise from interactions among components but cannot be attributed to any single element. At the scale of gene regulatory networks, emergent phenomena include homeostasis, differentiation, and adaptive response. Theoretical models aim to identify the conditions under which such properties appear, using simulation and analysis to reveal how global patterns arise from local rules. These insights have profound implications for non-model organisms, where evolutionary pressures may have sculpted unique regulatory architectures that produce similar emergent behaviors through alternative network configurations. Modeling such systems provides a theoretical basis for understanding evolutionary convergence and diversity in gene regulation.

Another crucial element of systems-level integration is the application of statistical mechanics and control theory to biological regulation. The cell can be viewed as a system seeking equilibrium under continuous perturbation, where regulatory feedback maintains functional stability. Theoretical models inspired by control theory describe

how feedback circuits detect deviations and implement corrective responses. These frameworks explain phenomena such as metabolic homeostasis and stress tolerance in terms of network stability criteria. In non-model organisms, applying such theoretical tools allows predictions about robustness and resilience, qualities that are often key to survival in fluctuating environments. This approach also informs synthetic biology, where insights from theoretical systems modeling guide the design of artificial regulatory networks with desired behaviors.

Network inference at the systems level also raises important computational challenges. The number of possible network configurations grows exponentially with the number of genes, creating a vast search space that cannot be exhaustively explored. To address this complexity, theoretical models employ heuristic and optimization algorithms that balance computational feasibility with biological realism. Techniques such as sparse regression, information-theoretic selection, and Bayesian sampling reduce dimensionality while preserving essential network features. These algorithms allow researchers to infer large-scale GRNs in non-model organisms without the need for complete data, making it possible to approximate the regulatory landscape from limited expression or sequence information.

The integration of systems-level approaches also invites a reconsideration of what constitutes biological explanation. In classical molecular biology, causation is often described in linear terms: one gene regulates another through a direct molecular mechanism. Systems-level modeling replaces this reductionist view with a relational one, where causation emerges from network context rather than isolated interactions. A theoretical model that accurately predicts system behavior can be considered explanatory even if it does not specify every molecular detail. This shift from mechanism to pattern aligns with a broader philosophical transition in biology, from studying isolated causes to understanding systemic organization. For non-model organisms, such a framework is indispensable, since detailed mechanisms are often inaccessible, but global regulatory principles can still be inferred and analyzed.

The value of integrating systems-level approaches in theoretical GRN modeling extends beyond scientific understanding to practical applications. Predictive models of regulatory systems can guide conservation efforts by identifying genes associated with environmental adaptability or resilience. In agriculture, theoretical models of plant regulatory networks can predict traits related to stress tolerance or yield optimization in species that have not been domesticated. In microbiology and ecology, they can help elucidate how microbial communities regulate collective functions, such as nutrient cycling or symbiosis, through distributed regulatory coordination. Each of these applications relies on the same theoretical foundation: the capacity to infer, simulate, and interpret regulation as a system-level phenomenon.

At its core, systems-level integration represents a shift in how biology conceives complexity. Theoretical modeling transforms genetic data into an analytical language capable of expressing organization, adaptation, and resilience. For non-model organisms, this transformation is not merely technical but epistemological. It redefines what it means to know a biological system when direct observation is limited. Through abstraction and synthesis, theoretical systems biology reveals that understanding life requires seeing it as an interdependent whole, where patterns of regulation, not isolated parts, define the essence of function. The integration of systems-level approaches into GRN modeling thus marks a convergence of mathematical reasoning and biological insight, offering a framework through which the hidden logic of non-model organisms can be uncovered and understood.

4. Theoretical Innovations and Computational Inference

Theoretical innovation in modeling gene regulatory networks arises from the need to transform sparse or incomplete biological data into coherent representations of regulatory architecture. Computational inference serves as the bridge between theory and data, enabling the extraction of structure, dynamics, and function from high-dimensional genomic information. The modeling of gene regulatory networks in non-model organisms depends critically on such innovation because direct empirical evidence is limited. The challenge lies in constructing theoretical systems capable of inferring relationships that are biologically plausible, computationally tractable, and generalizable across species. Theoretical advances in mathematics, computer science, and statistical learning have expanded the tools available for this task, allowing complex biological systems to be represented as inferable networks rather than as opaque molecular collections.

The foundation of computational inference lies in the recognition that gene expression data, when properly analyzed, contain traces of the underlying regulatory structure. Each transcript reflects a combination of regulatory influences, environmental inputs, and stochastic fluctuations. Theoretical models treat the relationships among these variables as structured dependencies that can be reconstructed mathematically. Information theory introduced the concept of mutual information as a measure of association between genes, capturing both linear and nonlinear dependencies. This principle was adapted into algorithms such as ARACNe and CLR, which infer regulatory edges by quantifying information transfer between gene pairs. Such models became foundational for non-model organisms because they require only expression data and make minimal

assumptions about specific molecular mechanisms. Their theoretical grounding in information theory allows them to function across diverse biological contexts where mechanistic data are unavailable.

Bayesian inference represents another major theoretical innovation in the modeling of gene regulatory networks. In Bayesian frameworks, each gene is represented as a random variable whose state depends probabilistically on the states of its regulators. The network structure corresponds to a directed acyclic graph, and the goal of inference is to identify the configuration of edges that best explains the observed data. The Bayesian approach allows the explicit incorporation of prior knowledge, such as sequence motifs or conserved pathways, and provides a principled mechanism for managing uncertainty. In non-model organisms, where empirical validation is difficult, this probabilistic reasoning becomes particularly powerful because it formalizes uncertainty rather than ignoring it. Bayesian networks can be extended to dynamic Bayesian models, which capture temporal dependencies and feedback regulation, allowing the inference of time-ordered causal relationships from sequential data. These theoretical frameworks provide a means of simulating how regulatory states evolve and interact across developmental or environmental gradients.

Another theoretical frontier is the integration of machine learning into GRN inference. Classical approaches relied on pairwise correlations or small-scale statistical models, but advances in computational power have enabled the application of deep learning, ensemble methods, and kernel-based approaches. Neural network architectures such as autoencoders and graph neural networks can model complex nonlinear dependencies without requiring explicit specification of functional forms. These models learn latent representations that capture regulatory modules and hierarchical organization within gene expression data. In non-model organisms, deep learning enables transfer learning, where models trained on data from well-characterized species are adapted to infer networks in related but under-studied taxa. This transfer of learned representations embodies a new kind of theoretical inference that leverages evolutionary similarity to overcome data scarcity.

Theoretical innovation also extends to integrating physical and biochemical constraints into computational inference. The concept of constraint-based modeling, originally developed for metabolic networks, has been adapted to gene regulation. In these models, the space of possible network configurations is restricted by known biological laws, such as conservation of mass, transcriptional kinetics, or thermodynamic feasibility. By embedding these constraints into the inference process, theoretical models avoid biologically implausible predictions and achieve greater interpretability. In non-model systems, these constraints often derive from comparative genomics or universal properties of regulatory motifs, allowing inference grounded in general biological principles rather than species-specific data.

An emerging theoretical direction involves the use of network sparsity and regularization techniques. Gene regulatory networks are typically sparse, meaning that each gene is influenced by a limited number of regulators. Sparse modeling techniques such as LASSO regression and elastic net regularization exploit this property to reduce overfitting and enhance interpretability. These methods identify a minimal set of predictors that best explain the expression of each gene, thereby inferring the most likely regulatory connections. The theoretical basis of sparsity aligns with biological efficiency, reflecting the economy of regulation observed in real systems. For non-model organisms, sparse inference provides a practical advantage because it limits the complexity of the network even when data dimensionality exceeds sample size, a common situation in ecological or field-derived datasets.

Theoretical developments in dynamical systems have also transformed how computational inference approaches gene regulation. By modeling the temporal evolution of gene expression as a system of coupled nonlinear equations, researchers can explore attractor landscapes that correspond to stable cellular states. These attractors represent theoretical predictions of differentiation, adaptation, or homeostasis. Dynamical models capture how perturbations propagate through the network, offering insight into resilience and critical transitions. In non-model organisms, such models can be applied to predict adaptive responses under changing environmental conditions, even when only static or partial data are available. Computational inference identifies the parameters that reproduce observed expression patterns, while theoretical analysis interprets these parameters in terms of biological function and stability.

A critical aspect of theoretical innovation is the reconciliation of inference and validation. In the absence of extensive experimental verification, theoretical frameworks rely on internal consistency, cross-validation with orthogonal data types, and simulation-based testing. Synthetic networks serve as benchmarks for evaluating algorithmic performance, ensuring that inferred networks reflect plausible biological behavior. For non-model organisms, where ground truth is limited, theoretical validation may involve testing whether inferred networks reproduce known evolutionary or ecological patterns. This conceptual approach treats predictive accuracy and explanatory coherence as dual criteria of model reliability. Theoretical inference becomes an iterative process, where models are continually refined through comparison with indirect evidence and general biological principles.

Computational inference also benefits from the incorporation of evolutionary theory. Gene regulatory networks evolve under constraints of robustness and adaptability, and their architectures bear traces of these evolutionary pressures. Comparative modeling uses homologous genes and conserved network motifs to infer ancestral regulatory structures and predict unobserved connections in related species. Evolutionary algorithms mimic natural selection to optimize network configurations according to fitness criteria derived from data or theoretical expectations. These methods embody the principle that biological networks are products of adaptive optimization rather than random assembly. In non-model organisms, integrating evolutionary reasoning allows inference guided by phylogenetic relationships and functional conservation, linking theoretical modeling with the broader narrative of biological diversity.

The rise of high-throughput sequencing has accelerated the development of scalable computational inference. Algorithms that once handled hundreds of genes now process entire genomes, integrating transcriptomic, epigenetic, and chromatin accessibility data. Theoretical innovations in parallel computing, probabilistic graphical modeling, and matrix factorization have made it possible to infer networks involving thousands of nodes with reasonable computational cost. Theoretical progress has thus paralleled technological advances, turning data abundance in some domains into transferable insights for those where data remain scarce. The interplay between theoretical generalization and computational efficiency has become central to systems biology, defining the capacity to extend inference across diverse organisms.

The ultimate aim of theoretical innovation in GRN inference is to move from descriptive reconstruction to predictive understanding. A successful theoretical model does not merely replicate observed data but anticipates unseen behaviors, predicts the outcome of perturbations, and identifies potential regulatory principles. Computational inference transforms biology into a predictive science, where theory informs experimentation and discovery proceeds through cycles of simulation and validation. For non-model organisms, this predictive capacity has transformative implications. It enables hypothesis generation about adaptation, stress response, or developmental regulation in species that cannot be studied experimentally. It reveals the underlying logic of life in contexts where observation is limited to fragments of data, converting those fragments into coherent theoretical wholes.

The integration of theoretical innovation and computational inference redefines the study of gene regulation as a dialogue between mathematics and biology. Theories of information flow, dynamical stability, and network topology become tools for interpreting the complexity of living systems. Each model becomes an experiment in abstraction, an attempt to uncover general laws governing the architecture of life. In the realm of non-model organisms, this approach provides the only feasible path toward understanding systems that resist direct experimentation. Theoretical innovation transforms computational inference into an instrument of exploration, capable of revealing the hidden regularities that organize life across scales and species. In this synthesis of mathematics, computation, and biology lies the foundation of a new theoretical understanding of gene regulation that transcends the limitations of data and reaches toward universal principles of biological organization.

5. Philosophical and Practical Challenges

Theoretical modeling of gene regulatory networks in non-model organisms raises questions that reach beyond computational technique or biological description. At its core, this endeavor engages with the philosophy of scientific representation, the nature of explanation, and the limits of knowledge in biological inquiry. It invites reflection on what it means to model life when direct empirical observation is constrained, and how theory itself functions as a form of evidence. The modeling of systems that cannot be fully observed challenges traditional hierarchies between empirical science and theoretical abstraction. It requires acknowledgment that understanding in biology often emerges not from direct measurement but from conceptual coherence and the ability to generate meaningful predictions about unobservable structures.

The distinction between model organisms and theoretical models is epistemologically significant. Model organisms, such as *Drosophila melanogaster* or *Arabidopsis thaliana*, serve as experimental proxies, allowing scientists to manipulate and observe biological processes under controlled conditions. Their epistemic authority derives from empirical reproducibility. Theoretical models, in contrast, operate within a different epistemic regime. They do not reproduce phenomena but simulate relationships, encoding hypotheses about causation and interaction into formal systems. The theoretical model stands not as a representation of a specific organism but as an abstract framework that captures essential structural or dynamic properties common across species. This distinction underlines a philosophical tension in biology: whether understanding arises from the observation of particular instances or from the construction of generalizable conceptual systems.

In the context of non-model organisms, this tension becomes especially visible. The absence of experimental tractability forces theorists to rely on inference and abstraction. Knowledge about these organisms often comes in fragmented forms, such as partial genomes, limited expression datasets, or comparative sequence alignments. Theoretical modeling transforms these fragments into structured hypotheses about regulation and function. From

a philosophical perspective, this act of construction raises the question of whether a model that cannot be directly verified still constitutes scientific knowledge. One argument suggests that scientific understanding does not depend solely on verification but on the model's capacity to organize observations, reveal hidden relationships, and generate testable expectations. Theoretical models of gene regulatory networks achieve this by articulating principles of organization that can later guide empirical research when new data become available.

A deeper philosophical challenge lies in the issue of representation. A theoretical model simplifies a complex biological system to make it intelligible. Simplification involves selective abstraction: the omission of detail to highlight structure. This process risks distorting reality if essential features are excluded or misrepresented. In non-model organisms, where the underlying system is poorly understood, the risk of misrepresentation is heightened. Yet the very act of abstraction can also be viewed as a creative scientific act. Theoretical biologists construct idealized systems that express the logic of biological regulation in formal terms. These idealizations are not literal depictions of molecular mechanisms but conceptual instruments that make reasoning about complex phenomena possible. In this sense, theoretical models do not compete with empirical descriptions; they complement them by providing frameworks through which complexity can be navigated.

The practical challenge associated with such modeling lies in data limitation and quality. Non-model organisms often lack comprehensive genomic annotation, curated databases, or high-resolution temporal datasets. These deficiencies constrain the ability to parameterize or validate models. Theoretical approaches must therefore rely on general biological principles such as conservation of motifs, energy optimization, or statistical regularities in gene expression. This reliance introduces uncertainty into inference. The practical response to this uncertainty has been the development of probabilistic and ensemble-based models, where predictions are expressed as distributions rather than fixed outcomes. Philosophically, this shift toward probabilistic representation reflects an acknowledgment that biological knowledge is inherently uncertain and context-dependent. Theoretical modeling thus becomes a discipline of reasoning under uncertainty rather than a pursuit of deterministic truth.

Another challenge arises from the question of causation. In experimental biology, causation is established through intervention and manipulation. In theoretical modeling, causation must be inferred from structure and correlation. The distinction between correlation and causation becomes blurred in this context. Theoretical models infer causal relationships by assuming that regulatory influence manifests as statistical dependence or directed information flow. These assumptions rely on formal analogies between mathematical and biological causality. Philosophers of science have debated whether such analogies can legitimately replace experimental proof. Some argue that theoretical causation serves as a provisional construct, valid insofar as it yields accurate predictions and coherent explanations. Others maintain that without empirical grounding, causal claims remain hypothetical. For non-model organisms, where experimental validation may be permanently unattainable, theoretical causation occupies a pragmatic role. It becomes a working hypothesis that structures future inquiry rather than a definitive statement about biological mechanism.

The ethical and epistemic implications of such modeling also deserve attention. When theoretical models are used to predict gene function or network behavior in species that cannot be experimentally manipulated, the results may influence conservation decisions, agricultural practices, or ecological management. The potential consequences of error become significant. This creates a philosophical responsibility to reflect on the limits of inference and the conditions under which theoretical predictions should inform practice. The use of computational models as surrogates for direct experimentation highlights the broader issue of how science navigates between theoretical elegance and empirical accountability. Responsible modeling in this context requires transparency about assumptions, explicit communication of uncertainty, and iterative refinement as new data emerge.

From a broader epistemological standpoint, theoretical modeling in non-model organisms challenges traditional demarcations between theory and observation. It reveals that theory is not merely a product of empirical data but an active process of shaping how data are interpreted. Incomplete datasets do not merely limit understanding; they stimulate the creation of models that reimagine what is knowable. This creative aspect aligns theoretical biology with fields such as cosmology or theoretical physics, where empirical access is limited and models serve as both hypotheses and explanatory frameworks. In such disciplines, validation is achieved not by direct observation but by coherence, predictive success, and integration within a larger theoretical system. The same criteria apply to GRN modeling in non-model organisms, suggesting that biological theory can achieve rigor even without experimental replication.

The practical side of modeling also involves technological and methodological constraints. Building and analyzing large-scale gene regulatory networks requires computational resources and algorithmic sophistication that may exceed current capabilities. The choice of algorithms, priors, and parameterization strategies can influence outcomes, raising questions about the objectivity of model inference. Theoretical innovation must therefore be accompanied by methodological reflexivity, acknowledging that models are products of both

biological insight and computational design. In non-model systems, where uncertainty is amplified, this reflexivity becomes part of the scientific method itself. The act of modeling becomes self-referential, with each iteration serving as both an exploration of biology and an examination of the assumptions embedded in computational reasoning.

Philosophically, the endeavor also invites reconsideration of what counts as explanation in biology. A model may explain by showing how patterns arise from rules, by unifying disparate phenomena under a single framework, or by providing an intelligible narrative of process. Theoretical models of GRNs achieve explanation through structure and dynamics rather than molecular detail. They show how regulatory coherence emerges from the interplay of feedback loops and control hierarchies. In doing so, they shift explanation from the mechanistic level to the systemic. This systemic explanation aligns with the idea that biological understanding is not only about identifying causes but about grasping organization. Theoretical modeling of non-model organisms thus participates in a philosophical transformation of biology from an empirical to a structural science.

The interplay between philosophical reflection and practical application defines the frontier of theoretical modeling. The limitations that make non-model organisms challenging subjects also make them fertile ground for conceptual innovation. By forcing reliance on theory rather than direct measurement, they reveal the creative and interpretive dimensions of scientific modeling. The philosophical challenge lies in embracing abstraction without losing contact with reality, while the practical challenge lies in implementing abstraction without generating arbitrary speculation. Together these challenges define a new epistemology of systems biology, one that values models not as substitutes for experiments but as instruments of reasoning that extend the reach of empirical science.

Theoretical modeling of gene regulatory networks in non-model organisms becomes both a scientific and a philosophical enterprise. It transforms the unknown into a structured field of inquiry, where questions about representation, causation, and explanation are as significant as questions about data and computation. The limitations that accompany these models do not diminish their value; they clarify the conditions under which knowledge is possible. In a discipline defined by complexity and partial understanding, theoretical modeling demonstrates that abstraction can be a form of insight, and that the boundaries of empirical science are not barriers but invitations to deeper reflection on how life can be understood through theory.

6. Conclusion

The theoretical modeling of gene regulatory networks in non-model organisms stands as one of the most significant developments in modern theoretical biology. It represents an intellectual synthesis of mathematics, computation, and evolutionary thought, offering a conceptual framework that transcends the boundaries of traditional experimental biology. The value of such modeling lies in its ability to generate structured understanding where empirical data are sparse, transforming the unknown into a field of inquiry defined by formal relationships and predictive logic. In doing so, theoretical approaches reveal that the essence of biology is not confined to direct observation but is deeply rooted in the capacity to reason abstractly about systems of life.

The study of gene regulatory networks reflects a broader philosophical movement in science toward understanding complexity through systems thinking. Living organisms can no longer be understood as simple assemblies of molecular components. They are dynamic systems whose behavior arises from the coordination of interactions across multiple levels of organization. For non-model organisms, whose biology remains largely unexplored, theoretical modeling offers a way to infer the rules that govern these interactions by analyzing patterns of information, structure, and function. Each network becomes an expression of how life organizes itself, adapting to constraints and responding to the environment through mechanisms that theory can describe even when experiment cannot verify.

The integration of mathematical abstraction with biological interpretation has redefined the practice of modeling itself. Equations and algorithms serve not only as computational tools but as representations of biological principles. They formalize hypotheses about regulation, feedback, and stability in ways that can be analyzed, compared, and generalized. This formalization gives theoretical models an autonomy that extends beyond specific datasets. A well-constructed model captures the logical architecture of life, demonstrating how universal laws of organization can manifest differently across species. For non-model organisms, this theoretical generality becomes essential. It provides the means to infer shared regulatory patterns that link the molecular ecology of diverse life forms into a coherent framework of understanding.

Theoretical modeling also deepens the conceptual unity between evolution and regulation. Gene networks evolve through processes of duplication, divergence, and selection, and their structure encodes the history of adaptation. Modeling these networks in non-model species allows the reconstruction of evolutionary logic in systems that cannot be experimentally probed. It reveals how robustness and flexibility co-exist, how novel traits arise from the reconfiguration of existing modules, and how stability in gene expression emerges from dynamic complexity.

In this sense, theoretical modeling does not only describe regulatory processes; it interprets them as evolutionary narratives inscribed in network topology and system behavior.

The role of theory in biology is often misunderstood as secondary to empirical discovery, yet in the study of non-model organisms, it becomes foundational. Theoretical models create the conceptual scaffolding upon which future experimentation can be built. They define the questions worth asking, predict relationships worth testing, and propose organizational patterns that guide empirical verification. This iterative relationship between theory and observation transforms biology from an inductive science into one that is both predictive and explanatory. Theoretical modeling of gene regulation thus exemplifies a new epistemic mode in which understanding is achieved not through accumulation of facts but through the articulation of coherent structures that give meaning to data.

The extension of theoretical frameworks into the domain of biodiversity has implications that reach beyond academic theory. Modeling gene regulatory networks in previously unstudied organisms allows the exploration of how life functions in extreme environments, how ecological interactions shape regulation, and how molecular systems adapt to diverse evolutionary pressures. These insights enrich not only basic science but also applications in conservation, agriculture, and biotechnology. Theoretical models become instruments for anticipating biological behavior, guiding decision-making in contexts where experimentation is limited or impossible. Theoretical modeling invites a reconsideration of what it means to understand life. To model a regulatory network is to engage with the logic of self-organization, to describe how complexity arises from simplicity through the interplay of structure and process. It is to view biology as a field where mathematics and imagination converge to reveal patterns that empirical methods alone cannot uncover. For non-model organisms, this convergence is especially significant. It transforms the absence of direct evidence into an opportunity for conceptual innovation, making theory itself a means of discovery.

The future of theoretical modeling in biology will depend on maintaining this balance between abstraction and realism. Models must remain grounded in biological plausibility while continuing to expand the boundaries of what can be inferred. The success of this approach will not be measured only by accuracy but by its capacity to inspire new forms of inquiry and to unify understanding across the diversity of life. The study of gene regulatory networks in non-model organisms embodies this vision. It shows that theoretical reasoning can illuminate the hidden order of living systems and that abstraction, when guided by rigor and imagination, can reveal truths about life that extend beyond the reach of observation. Through this union of theory and biology, the scientific imagination continues to transform uncertainty into knowledge, giving structure and meaning to the endless complexity of the natural world.

References

Bonasio, R. (2015). The expanding epigenetic landscape of non-model organisms. *Journal of Experimental Biology*, 218(1), 114–122.

Gelfand, M. S. (2023). Bioinformatics and evolution of non-model organisms. Institute of Molecular Genetics and Genetic Engineering (IMGGE) Belgrade Proceedings.

Levy, A., & Currie, A. (2015). Model organisms are not (theoretical) models. *The British Journal for the Philosophy of Science*, 66(2), 327–348.

Linde, J., Buyko, E., Altwasser, R., Hahn, U., & Guthke, R. (2011). Full-genomic network inference for non-model organisms: a case study for the fungal pathogen *Candida albicans*. *International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering*, 5(8), 379–389.

Linde, J., Schulze, S., Henkel, S. G., & Guthke, R. (2015). Data- and knowledge-based modeling of gene regulatory networks: an update. *EXCLI Journal*, 14, 346–378.

Rodgers-Melnick, E., Culp, M., & DiFazio, S. P. (2013). Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS. *BMC Genomics*, 14, 608.

Sharma, R. (2013). Prediction of regulatory networks for non-model organisms. University of New Brunswick.

Williams, T. D., Turan, N., Diab, A. M., & Wu, H. (2011). Towards a system level understanding of non-model organisms sampled from the environment: a network biology approach. *PLoS Computational Biology*, 7(8), e1002126.

Xu, Y., Guo, M., Zou, Q., Liu, X., Wang, C., & Liu, Y. (2014). System-Level Insights into the Cellular Interactome of a Non-Model Organism: Inferring, Modelling and Analysing Functional Gene Network of Soybean (*Glycine max*). *PLoS ONE*, 9(12), e113907.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (<http://creativecommons.org/licenses/by/4.0/>).