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Abstract 

Due to the recent threatening pandemic COVID-19, the research area of this disease is increasing. This paper 

tries to establish COVID-19 infection transmission by Susceptible-Infectious-Recovered (SIR) compartmental 

model for epidemic prediction and prevention. The model is built based on the secondary data of the infected 

persons and discharged patients. It is considered as a valuable tool in public health sector, as it can provide 

suggestions about the fatality of pandemic to take necessary actions for preventing the infections. COVID-19 is 

spreading worldwide extremely, and at present it becomes both local and global concern. This model can show 

the fatality of COVID-19 with time and can predict whether the disease will further spread or abolish 

completely. This study stresses on vaccination to reduce the infection of the disease. It can provide how many 

people are needed to be vaccinated to create herd immunity against COVID-19. Overtime the immunity due to 

vaccination may decrease and after a fixed period the immunity of COVID-19 due to vaccination may extinct 

completely. The article attempts to give a mathematical presentation to aware the immunity loss individuals with 

other susceptible. It also tries to alert the people about the re-infection of the previous COVID-19 infected 

persons. The aim of this study is to minimize both global economic losses and deaths due to COVID-19.  

Keywords: COVID-19, SARS-CoV-2, SIR Model, immunity, pandemics, vaccination, basic reproduction 

number 

1. Introduction 

In the 21st century, global humanity has faced many different types of epidemics/pandemics, such as Severe 

Acute Respiratory Syndrome Coronavirus (SARS-CoV) (outbreaks in 2002-2003), Middle East Respiratory 

Syndrome Coronavirus (MERS-CoV) (outbreaks in 2012), Ebola (first outbreaks in 1976, and later in 2013), 

H1N1 (outbreaks in 2009), and at present SARS-CoV-2 (COVID-19) (outbreaks in December 2019). Among 

these outbreaks, COVID-19 is more fatal than the others. It becomes a great challenge before the global 

humanity to abolish the disease completely (Assiri et al., 2013; Li, 2013; Chan et al., 2020; Mohajan, 2020b). 

Actually the transmission nature of the COVID-19 is not fixed with change of time and real situation is more 

complicated than the epidemic SIR model (Zhu & Shen, 2021).  

During the period of COVID-19 virus transmission, the influence of population dynamics, such as birth, death, 

and migration of population in this period is ignored (da Silva, 2021). Therefore, the total population N of 

epidemic area can be regarded as a constant over time, i.e., ( ) NtN == constant , for all  t0 . We divide 

the population into three homogeneous subgroups: susceptible ( )tS , infectious ( )tI , and recovered ( )tR . Hence, 

( ) ( ) ( ) ( ) NtNtRtItS ==++ , for all  t0 . The disease-free state represents, ( ) NtS = , ( ) 0=tI , and ( ) 0=tR , 

for all  t0  (Tang et al., 2020). 

COVID-19 is a micro-parasitic disease. It spreads worldwide through human interactions. The precise nature and 

details of human interactions determine how epidemic grows and infection spreads. If the disease is short lived 

compared with the population lifetime, then demography can be ignored (Abadie et al., 2020). Epidemiological 
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mathematical models are considered as valuable tools for investigating the spread and control of contagious 

disease COVID-19 (Dubey et al., 2015). After the outbreak of COVID-19, many researchers of worldwide have 

published articles with giving priority in epidemic mathematical models. In modern society, epidemiological 

study with mathematics provides the aspects of the evolution of diseases. It captures the dynamics of acute 

infections that confers lifelong immunity once recovered (Rodrigues, 2016; Wacker & Schlüter, 2020).  

The Susceptible-Infectious-Recovered (SIR) model of epidemics is very simple. It is one of the most popular 

epidemic threshold models in epidemiology that was initially proposed. It is introduced in 1927 by a Scottish 

biochemist, William Ogilvy Kermack (1898-1970), and a Scottish military physician and epidemiologist, 

Anderson Gray McKendrick (1876-1943). Later, it builds a block for the epidemic researchers and the dynamical 

behavior of the model is globally performed. It is based on an exponential fit for short term and long term 

predictions. It has only three compartments: susceptible ( )tS , infectious ( )tI , and recovered ( )tR  
and only two 

directions of changes: from susceptible to infected and from infected to recovery (Bhattacharya et al., 2015; 

Kermack & Mackendrick, 1927). In the SIR model, disease spread proportional to the population, the complete 

lack of immunity at the beginning of the epidemic, has no latency period, the short duration of the disease 

relative to lifespan (Zhu & Shen, 2021). 

The basic reproduction number in SIR model is denoted by 0R . It is the number of secondary infections that one 

infected person would produce in a fully susceptible population through the entire duration of the infectious 

period. In this model,
 

10 =R
 provides a threshold condition for the stability of the disease-free equilibrium point. 

If 10 R , the world will be COVID-19 free in a very short time, and if 10 R , then infected persons will 

transmit the diseases into susceptible people quicker than recovery rate, so the disease grow to be an epidemic 

(Murray, 2002; Heffernan et al., 2005). 

There are numerous applications of this model, and in this study we apply it for the basic model to COVID-19 

outbreak. This paper tries to establish COVID-19 infection transmission by SIR model for epidemic prediction 

and prevention. The model is built based on the data of the infected persons, discharged patients and discharged 

patients during the period of isolation and control. The mass vaccination develops herd immunization among the 

susceptible persons that can reduce COVID-19 transmission. It is evident that first time COVID-19 infected 

persons re-infected after recovery from the disease. Also after a fixed period the vaccinated peoples loss the 

immunity, ultimately they become susceptible. Therefore, combined attempts including SIR model analysis are 

necessary to abolish this fatal disease completely from the world. The SIR model is a valuable tool in public 

health, as it predicts the necessities to reduce or prevent infections. 

2. Literature Review 

William Ogilvy Kermack and Anderson Gray McKendrick have introduced well-known SIR model for the first 

time in 1927. They have considered a fixed population size and have divided it into three different homogeneous 

groups of people: susceptible, infectious, and recovered, excluding natural births and deaths, and deaths by 

epidemic disease (Kermack & Mackendrick, 1927). Balram Dubey and his coauthors have investigated the 

global dynamics of SIR model in which the incidence rate is being considered as Beddington-DeAngelis type 

and the treatment rate as Holling type II. They have revealed that the disease-free equilibrium is locally 

asymptotically stable when reproduction number is less than one. They have also examined the existence of 

Hopf bifurcation by using Andronov-Hopf bifurcation theorem (Dubey et al., 2015). 

Paritosh Bhattacharya and his coauthors have analyzed the compartmental SIR models for disease transmission. 

They have calculated the basic reproduction number and the final size of the epidemic. They have also studied 

the models with multiple compartments and treatment of infective (Bhattacharya et al., 2015). Rahim Uddin and 

Ebrahem A. Algehyne have discussed mathematical SIR model of COVID-19 in the form of differential 

equations and have obtained that protection, exposure, and death rates affect people with the elapse of time 

(Uddin & Algehyne, 2021). Wen-jing Zhu and Shou-feng Shen have constructed a reliable model based on the 

SIR model to analyze and assess the epidemic dynamics of COVID-19 in China. They have identified that the 

cure rate is 0.05 and the reproduction number is 0.4490 of COVID-19 at the end of 2020 and beginning of 2021 

(Zhu & Shen, 2021). Samia Ghersheen and her coauthors have proved that for small carrying capacity K, there 

exists a globally stable disease-free equilibrium point. They have also established the continuity of the transition 

dynamics of the stable equilibrium point. They have proved that, i) for small values of K, there exists a unique 

globally stable equilibrium point, and ii) the disease moves continuously as K is growing (Ghersheen et al., 

2019). 

Haradhan Kumar Mohajan has discussed aspects of global pandemic COVID-19 through his review papers. He 

has tried to create consciousness among the common people to reduce the fatality of this killer disease. He also 

highlights the social, economic, and health impacts in the world’s poorest countries due to COVID-19 pandemic 

outbreak. He also emphasizes on COVID-19 vaccines to reduce both morbidity and mortality globally. He also 

tries to discuss SEIR model with detail mathematical analysis (Mohajan, 2020a, b, 2021a, b, c). Recently, Peter 
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X. Song and his coworkers have proposed a modification of the SIR model to allow a state of quarantine, that is, 

a fraction of the susceptible population becomes quarantined and cannot be infected (Song et al., 2020). Abdon 

Atangana has used fractional differential equations in extended SIR and SEIR models to investigate the spread of 

COVID-19 in mathematical biology. They have applied novel differential and integral operators to show the 

effect of the lockdown (Atangana, 2020). Benjamin Wacker and Jan Schlüter have discussed both time-

continuous and time-discrete SIR models. First, they introduce continuous variant with time-varying 

transmission and recovery rates, and then they develop different possible time-discrete SIR models (Wacker & 

Schlüter, 2020). Andrew G. Atkeson has introduced a simple SIR model of the progression of COVID-19 to aid 

understanding of how such a model might be incorporated into more standard macroeconomic models. He 

allows quantitative statements regarding the tradeoff between the severity and timing of suppression of the 

disease through social distancing and the progression of the disease in the population (Atkeson, 2020). 

Curtis L. Wesley and Linda J. S. Allen have studied epidemic models with periodic demographics that include 

temporary immunity, isolation, and multiple strains to calculate the time-averaged basic reproduction number, 

which is a threshold for disease extinction (Wesley & Allen, 2009). In a compartmental model Pauline van den 

Driessche focuses on the basic reproduction number for infectious disease to determine whether or not the 

disease dies out (van den Driessche, 2017). Himel Talukder and his coauthors have estimated the basic 

reproduction number 
0R  of the COVID-19 infection, based on the real time confirmed cases and suspected cases, 

in Bangladesh, to control this pandemic effectively. The value of 
0R  is estimated by them within 3.19 and 5.24, 

based on real time data of infected cases of COVID-19 from WHO situation report. They are confirmed that 
0R  

of COVID is higher than SARS and has a higher rate of transmissibility. They have stressed that for effective 

control of COVID, proper control measures have to be taken quickly to make the 
0R  less than 1 (Talukder et al., 

2020).  

Joanna Nicho compares the vaccination percentage for herd immunity SIR epidemiology model against the 

current percentage of vaccinated individuals (Nicho, 2010). O. D. Makinde presents a SIR model with a constant 

vaccination technique. He shows that the vaccine has full efficacy, so that the vaccinated peoples will not be re-

infected (Makinde, 2007). Later, Samuel Y. Akinyemi and his coauthors have constructed the SIR model that 

includes vaccination, immunity loss, and relapse (Akinyemi et al., 2016).  

3. Methodology of the Study 

In this paper we have formulated SIR model with some initial values for systems of ordinary differential 

equations, and later the model is analyzed mathematically. We have provided some theorems with proof. We 

have also stressed on vaccination to create herd immunity against COVID-19. Some mathematical procedures 

are given on the support of it if immunity of vaccines loss. We have tried to provide mathematical analysis if 

once infected and recovered persons are re-infected due to COVID-19. We have given a section on the basic 

reproduction number 
0R

 
and stability of SIR model is given in briefly. The article is prepared depending on the 

secondary data sources that are collected from previous research articles, published books, websites, etc.  

In the study we have tried to maintain the reliability and validity throughout the research (Mohajan, 2017). To 

make this article meaningful we have followed both quantitative and qualitative research methodology (Mohajan, 

2018, 2020c). 

4. Objective of the Study 

The main objective of this article is to construct a reliable SIR model for analyzing the pandemic COVID-19 in 

some details. The other minor objectives of the model are as follows: 

• to display the mathematical analysis more clearly,  

• to analyze the theoretical explanations properly, and  

• to express the usefulness of vaccine for growing herd immunity.  

5. Overview of COVID-19  

The SARS-CoV-2 is a new human coronavirus which developed at the end of December 2019 in Wuhan, Hubei 

Province, China, which affects lungs, with severe acute respiratory illness that develop a fever, dry cough, 

fatigue, and shortness of breath (WHO, 2020a). The most common symptoms of these disease are; fever, 

coughing, shortness of breath or difficulty in breathing (Lu et al., 2020). Minor to major symptoms of this illness 

are fever (>100.4°F/38°C), dry cough, fatigue, sputum production, dyspnoea, shortness of breath, lymphopenia, 

anorexia, headache, hypoxemia, chills, nausea or vomiting, rhinorrhoea, muscle or joint pain, grand-glass 

opacities, myalgia, haemoptysis, sore throat, sneezing, nasal congestion, RNAaemia, diarrhea, etc. A COVID-19 

infected patient may experience one or more symptoms. In some cases infection happened without any 

symptoms. Some patients experienced loss of taste, appetite or smell (Carlos et al., 2020; Huang et al., 2020; 

Mohajan, 2021a, b; Ren et al., 2020; Wang et al., 2020). On 11 March 2020, the WHO declared the global 
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outbreak as a pandemic to minimize the infection and mortality rate (WHO, 2020b). Public health responses for 

SARS-CoV-2 are isolation, quarantines, travel restriction, stop of workplace, closures of educational institution, 

and ultimately lockdown (Rothan & Byrareddy, 2020). On 12 December 2021, the disease spread up to 222 

countries and territories globally; total confirmed deaths become 5,156,403, total confirmed cases 257,007,274, 

with total recovery 232,049,587; and also with highest deaths and infections in the USA (Worldometer, 2021). 

6. Notation and Elementary Discussions 

Let us consider a sufficiently large constant size of population N, and assume that births and natural deaths are 

equal. Also newborns and all people of different ages are susceptible. In this model, there are only three 

compartments: Susceptible ( )tS , Infected ( )tI , and recovered ( )tR , for all  ) ,0t . We assume that each 

individual of the total population is either susceptible, infectious or recovered from the disease with life-long 

immunity. The process can be represented by (Murray, 2002; Capasso, 2008),  

( ) ( ) ( )tRtItS →→ .      (1) 

It is a classical mathematical model of dynamic epidemical. The number of people who become infected per unit 

of time in epidemiology is called incidence rate. In the SIR model, incidence rate, as well as treatment rate plays 

an important role while analyzing the transmission of diseases. Since in SIR model an epidemic occurs relatively 

quickly, the model does not include births and deaths (Dubey et al., 2015). The model was built based on the 

data of the infected persons, discharged patients, and also discharged patients during the period of isolation and 

control (Harko et al., 2014). In SIR model, there is no difference between those who are recovered and those 

who are died; all of them are kept into compartment ( )tR . In this model, assumes that the population is 

homogeneous and there is no vital dynamics, that is, the total population remains constant (da Silva, 2021). The 

three compartments are defined as follows (Padua & Tulang, 2010; Tang et al., 2020): 

Susceptible: The susceptible refers to a group of people who are not yet infected but may be infected with the 

SARS-CoV-2 virus or any other virus at any time. Total number of susceptible people at time t is denoted by
 

( )tS . 

Infective: The infective refers to a group of people who have been infected and have infectivity. Infected 

individuals can spread the disease to susceptible individuals. After the recovery they enter the recovered 

compartment. Total number of infective people at time t is denoted by
 ( )tI . 

Removal: The removed refers to a group of people who have been removed from the COVID-19 infected people, 

such as died, isolated or recovered and are immunized to the SARS-CoV-2 virus. Let ( )tR  is the number of 

recovered/removed individuals who are removed from the population by recovery, immunization, hospitalization, 

death or by any other means. In our model, the removed group consists of both recovered individuals, as well as 

the deaths caused by COVID-19. 

7. Formulation of SIR Model 

The SIR model is an epidemiological model that computes the theoretical number of people infected with a 

contagious illness within a closed population over time (Kermack & Mackendrick, 1927). In SIR model, let 

0b  is the contact or infection or transmission rate, and 0c  is the recovery rate of the disease, and these 

parameters are determined depending on the fraction of the infected population, ( )tI  changes over time (Nicho, 

2010; Yang et al., 2021). Therefore, an infected individual able to transmit the disease with ( )tbN  others in per 

unit time and the fraction of contacts by an infected with a susceptible is ( )
( )tN

tS . The number of new infection in 

unit time is ( )
( )
( )tN

tS
tbN .

 that gives the rate of new infections as ( )
( )
( )

( ) ( ) ( )tItbStI
tN

tS
tbN =..  (Bhattacharya et al., 

2015). Therefore, in the ( )tS  compartment, ( ) ( )tItbS  individuals will be decreased; whereas in the ( )tI  

compartment, ( ) ( )tItbS  individuals will be increased, and ( )tcI  individuals will be reduced due to recovery. In 

the ( )tR  compartment, ( )tcI  recovery individuals will be added. The SIR model can be written using ordinary 

differential equations as (Hethcote, 1989; Murray, 2002); 
( )

( ) ( )tItbS
dt

tdS
−=

       

(2) 

( )
( ) ( ) ( )tcItItbS

dt

tdI
−=

      

(3) 

( )
( )tcI

dt

tdR
=

       

(4) 
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where 
b

c
r =  is relative removal rate. Equation (2) indicates that, ( )

0
dt

tdS , i.e., in the elapse of time, the people 

in ( )tS  
compartment will be decreased. ( )tI  initially increases exponentially, then moves to a plateau, and 

finally shrinks to zero if the disease is abolished completely after a finite time interval (Baez-Sanchez & Bobko, 

2020; Bernardi & Aminian, 2021). At 0=t  the initial conditions of the model are (Murray, 2002),  

( ) ( ) ( ) 00,00,00 00 === RIISS , with 
00 SI  .   (5) 

For disease free equilibrium, ( ) 0StS = , ( ) 0=tI , and ( ) 0=tR . The time-dependent SIR model is much better to 

track the disease spread, control, and predict the future trend. Equations (2), (3), and (4) represent first-order 

non-linear differential equations of the SIR model (Dubey et al., 2015). Epidemic is controlled if rS 0
. The 

flowchart of SIR model is given in Figure 1, where the boxes denote compartments, and arrows indicate flux 

between the compartments.  

 

 

Figure 1. Flowchart of SIR model that displays the flux between the three compartments: ( )tS , ( )tI , and ( )tR  

 

Adding (2), (3), and (4) we get (Murray, 2002),  

( ) ( ) ( )
0=++

dt

tdR

dt

tdI

dt

tdS
.      (6) 

Integrating (6) we get the total population size in the SIR model as, 

( ) ( ) ( ) ( ) NtNtRtItS ==++ (constant).     (7) 

For susceptible-infectious-susceptible (SIS) case, if a susceptible becomes sick, then recovers without immunity 

is consider SIS, for example, the common cold, i.e., if ( ) 0=tR , i.e., if there is no recovery or no death happen 

due to disease we get, ( ) ( ) NtItS =+ , for all  ) ,0t , and remain within the triangle (Figure 2). 

 

 

Figure 2. Solution curves for SIS. 

 

Theorem 1: In SIR model, ( )tS  is susceptible, and ( )tI  is infected at an arbitrary time t. At 0=t  the initial 

conditions are, ( ) 00 0 = SS , and ( ) 00 0 = II , then, 

i) ( )
0

00max ln
S

r
rrSItI +−+=

, where 
b

c
r =  is relative removal rate and in the model r is independent of time.  

ii) ( ) 


















+−+−= t

S

r
rrSIbStS

0

000 lnlnexp , for ( )maxtI , and 
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iii) ( ) t
S

r
rrSIctR 










+−+=

0

00 ln
, for ( )maxtI . 

Proof: In SIR model, ( )tS  is susceptible, and ( )tI  infected at an arbitrary time t. At 0=t  the initial conditions 

are, ( ) 00 0 = SS  and ( ) 00 0 = II . Dividing (3) by (2) we get, 

( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )

11 −=−=
−

=
tS

r

tbS

c

tItbS

tItbStcI

tdS

tdI

 

.

   

(8) 

Integrating (8) we get, 

( )
( )

( ) ( ) −= tdStdS
tS

r
tdI                                                                                

 

( ) ( ) ( ) 1ln AtStSrtI +−= .

      

(9) 

Using initial conditions in (9) we get,  

1000 ln ASSrI +−=
 

0001 ln SSrIA +−= .

 
Hence,  ( ) ( ) ( ) 000 lnln SSrItStSrtI +−+−=  

( ) ( )
( )

0

00 ln
S

tS
rtSSItI +−+= . 

( )tI  will be maximum if, ( )
0=

dt

tdI , then (3) becomes, 

( )( ) ( ) 0=− tIctbS
 

( ) r
b

c
tS == , since ( ) 0tI . 

Hence,   ( )
0

00max ln
S

r
rrSItI +−+= .     (10) 

Using (10) in (2) we get,  

( )
( )

dt
S

r
rrSIb

tS

tdS










+−+−=

0

00 ln . 

Integrating we get, 

( ) 2

0

00 lnln At
S

r
rrSIbtS +










+−+−=

 
Using initial condition, ( ) 00 0 = SS  at 0=t  we get, 

02 lnSA =  

Hence,  

( ) 0

0

00 lnlnln St
S

r
rrSIbtS +










+−+−=

 

( ) 


















+−+−= t

S

r
rrSIbStS

0

000 lnlnexp

. 

Using (10) in (4) we get,  

( )










+−+=

0

00 ln
S

r
rrSIc

dt

tdR

.     (11) 

Integrating we get, 

( ) 3

0

00 ln At
S

r
rrSIctR +










+−+=

.     (12) 

Using initial condition ( ) 00 =R  at 0=t  we get, 03 =A . Hence, 

( ) t
S

r
rrSIctR 










+−+=

0

00 ln

.     (13) 

Theorem 2: In SIR model, ( )tS  susceptive, and ( )tR  is recovery/dead at an arbitrary time t. At 0=t  the initial 

conditions are, ( ) 00 0 = SS , ( ) ,00 =R  then,  
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i) ( )
( ) 0ln

1
StR

retS
+−

=  

ii) ( )
( )tS

S
rtR 0ln=  

iii) 

( )
( )



+−

−−

=

R

StR
r RetN

dR

c
t

0
ln

1
0

1 , where 
b

c
r =  is relative removal rate. 

Proof: Dividing (4) by (2) we get, 

( )
( )

( ) ( )
( )tcI

tItbS

tdR

tdS
−=                                                                                             

( )
( )

( )tdR
c

b

tS

tdS
−= .      (14) 

Integrating (14) we get, 

( )
( )

( ) −= tdR
c

b

tS

tdS

                                                                                          

( ) ( ) 4

1
ln AtR

r
tS +−=

.      (15) 

At 0=t  the initial conditions are, ( ) 00 0 = SS  and ( ) 00 =R , then (15) gives, 
04 lnSA = . 

Hence,                                                          ( ) ( ) 0ln
1

ln StR
r

tS +−=  

( )
( ) 0ln

1
StR

retS
+−

=
 

( ) ( )tSStR
r

lnln
1

0 −=
 

( )
( )tS

S
rtR 0ln=

. 

Again we have, 

( ) ( ) ( ) ( )tNtRtItS =++  
( ) ( ) ( ) ( )tRtStNtI −−= .     (16) 

By using (16) in (4) we get,  

( )
( ) ( ) ( ) tRtStNc

dt

tdR
−−=

.     (17) 

Integrating (17) we get, 

( )

( )
( )

( )


−−

=
+−

R

StR
r tRetN

tdR

c
t

0
ln

1
0

1

.     (18) 

Equation (18) gives the time of recovery of the disease. As pandemic becomes at steady state when →t , 

hence (17) gives,  

( )
0=

dt

tdR

.       (19) 

Integrating (19) we get, 

( ) == RtR constant , say. 

Then (18) becomes, 

( )
( )



+−

−−

=

R

StR
r RetN

dR

c
t

0
ln

1
0

1

.     (20) 

Theorem 3: In SIR model, ( )tS  is susceptive, ( )tI  infected, and ( )tR  is recovery/dead at an arbitrary time t, 

then 0t , 

 i) ( ) ( )tNtSS 0
 

ii) ( ) ( )tNtII 0
, and 
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iii) ( ) ( )tNtR 0 . 

Proof: i) For 0=t , ( ) 00 0 = SS
 
and for  t0  we have, 

( )
( )

0
0ln

1

=
+− StR

retS . 

Almost all the individuals in the society are susceptible. Some of the individuals or everybody in the society has 

a probability of infection by COVID-19. Consequently, ( ) ( )tNtS  . For →t ,  

   ( ) ( )tNStS =  . 

Hence,                                   
( ) ( )tNtSS 0 . 

ii) For 0=t , ( ) 00 0 = II , and for 0t  we have, 

( ) 0ln
0

00 +−+=
S

r
rrSItI

. 

Almost all the individuals may be infected, i.e., some of the individuals or everybody in the society can be 

infected by COVID-19 or nobody can be infected. Consequently, ( ) ( )tNtI  . For →t ,  

                        
( ) ( )tNItI =  . 

Hence,                        
( ) ( )tNtII 0 . 

iii) For 0=t , ( ) 00 =R , i.e., before the COVID-19 pandemic outbreak everybody in the society were COVID-

19 disease free. For  t0  we have, 

( )
( )

0ln 0 =
tS

S
rtR

. 

Almost all the infected individuals can be recovered. Some of the infected individuals or all the members of the 

society can be recovered from COVID-19. On the other hand, some or all from COVID-19 infected persons may 

die. Both recovered and death individuals are removed from the ( )tR  compartment. Consequently, ( ) ( )tNtR  . 

For →t  we have, ( ) ( )tNRtR =   

Hence,                       
( ) ( )tNtR 0

. 

( )
( ) ( )tItbS

dt

tdS
−=

      (2) 

( )
( ) ( ) ( )tcItItbS

dt

tdI
−=

      (3) 

( )
( )tcI

dt

tdR
=

       (4) 

( ) ( ) ( ) ( ) ( )tItbStItSbtS  −−=  

7.1 SIR Model with Death  

Let in a particular time t, the population of the world is constant, so that, the birth rate is equal to death rate. Let 

the birth rate be, 0a , and also the death rate be, 0 ; consequently, =a . Let the new born babies are 

quite healthy but susceptible, i.e., ( ) ( )taNtB =  susceptible individuals will in total populations. Since b is the 

contact rate, in the ( )tS  compartment, ( ) ( )tItbS  will be decreased. On the other hand, the individuals of ( )tI  

compartment, ( ) ( )tItbS  will be increased. Since c  is the recovery rate of disease, in the ( )tI  compartment, 

( )tcI  individuals will be reduced (Baez-Sanchez & Bobko, 2020; Bernardi & Aminian, 2021). In the ( )tS , ( )tI , 

and ( )tR  compartments the amount of death are ( )tS , ( )tI , and ( )tR  respectively. Then equations of SIR 

model can be written as (Hethcote, 1989; Makinde, 2007); 

( )
( ) ( ) ( ) ( )tStItbStaN

dt

tdS
−−=      (21) 

( )
( ) ( ) ( ) ( )tItcItItbS

dt

tdI
−−=      (22) 

( )
( ) ( )tRtcI

dt

tdR
−=       (23) 

where ( ) 00 S , ( ) 00 I , ( ) 00 R . The flowchart of SIR model by considering both death and birth is given in 

Figure 3 (Murray, 2002).  

 

                                           ( )tS                     ( )tI                       ( )tR      
 Death                          
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                               ( )taN   
                   ( ) ( )tItbE                    

  ( )tcI                     Survival
 

                                 Birth 

                   

       

 

Figure 3. Flowchart of SIR model considering death and birth. 

 

Theorem 4: In SIR model, ( )tS  is susceptible, and ( )tI  infected at an arbitrary time t. At 0=t  the initial 

conditions are, ( ) 00 0 = SS , and ( ) 00 0 = II . Consider birth rate equals death rate, i.e., =a , also consider 

there is no removal, i.e., ( ) 0=tR , then, 

( ) ( )
( )





−

−
+−+=

0

00 ln
bS

tbS
rtSSItI . 

Proof: Dividing (22) by (21) we get,  

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )tStItbStaN

tItcItItbS

tdS

tdI





−−

−−
=

     

(24) 

If there is no removal, i.e., ( ) 0=tR  
we get, ( ) ( ) ( )tItStN += , also =a , then (24) becomes, 

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) 







−
+−=

−

−−
=

−

−−
=

tbS

c

tbS

ctbS

tItbStI

tItcItItbS

tdS

tdI
1

 

( ) ( )
( )
( )tbS

tcdS
tdStdI

−
−−=
                                                                                                        

( ) ( ) ( )( )−+−= tbS
b

c
tStI ln

                                                                                                 

( ) ( ) ( )( ) 5ln AtbStStI
r
+−+−= 

.                                            

Using initial conditions: ( ) 0StS = , ( ) 0ItI =  we get, 

( ) 5000 ln AbSSI
r
+−+−= 

 

( ) r
dbSSIA

−
−++= 0005 ln

 

( ) ( )
( )





−

−
+−+=

0

00 ln
bS

tbS
rtSSItI

.    (25)  

Theorem 5: If all infected are removed, i.e., if all infected are recovered or some recovered and the rest (very 

few) are died then, ( ) ( )tRtI → , hence for ( ) 0=tR  at 0=t , then,  

i) ( ) ( )tcetR −= ,  

ii) ( ) ( )( )( ) 


−−
−

= 0ln bStbS
b

c
tR , 

iii) ( )

( )

( ) bbSb

e
b

c

tS

tc





 

+
−







 −

=

−

0

exp
. 

Proof: i) From (23) we get, 

( )
( )

( )dtc
tR

tdR
−=  

( ) ( ) 6ln AtctR +−=  . 

Using initial condition ( ) 0=tR  at 0=t  we get, 06 =A . 

( ) ( )tctR −=ln
 

( ) ( )tcetR −=
.      (26) 

ii) Dividing (21) by (23) we get, 

( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( )tRtcI

tStItbStItS

tdR

tdS





−

−−+
=  

( )
( )

( )( ) ( )
( ) ( )tRc

tRtbS

tdR

tdS





−

−
=  

( )
( )

( )tdR
ctbS

tdS

 −
=

−

1 . 

 
( )tS  

 
( )tI  

  
( )tR  
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Integrating we get, 

( )( ) ( )
7

ln
A

c

tR

b

tbS
+

−
=

−
−



 . 

Using initial conditions: ( ) 00 SS = , and ( ) 0=tR  at 0=t  we get, 

( )
b

bS
A 0

7

ln −
=



. 

Hence,    

( )( ) ( ) ( )
b

bS

c

tR

b

tbS 0lnln −
+

−
=

−
−







 

( ) ( )( )( ) 


−−
−

= 0ln bStbS
b

c
tR

.   (27) 

iii) Equalizing (26) and (27) we get, 

( ) ( )( )( ) 
 −−
−

=−

0ln bStbS
b

c
e tc  

( ) ( )( )( )  b

c
tc bStbSe

−
− −−=


  0ln  

( )  ( )( )( )  b

c
tc bStbSe

−
− −−=


  0exp  

( )  ( )( ) ( ) b

c

b

c
tc bStbSe

−−
− −−=


  0exp  

( )( )

( )

( )







−







 −

=−

−

0

exp

bS

e
b

c

tbS

tc

 

( )

( )

( ) bbSb

e
b

c

tS

tc





 

+
−







 −

=

−

0

exp
.    (28) 

7.2 Vaccine Efficiency of COVID-19 

Individuals who have taken a full dose of vaccine and they acquire immunity to a particular infectious disease. A 

population is said to have herd immunity for COVID-19 if enough people are immune so that the disease would 

not spread. In the society, the population is homogeneously mixing and the immune people are distributed 

uniformly in the population. Herd immunity is obtained by the vaccination to a higher percentage people. After 

growing immunization, the individuals move from the ( )tS  
compartment to the ( )tR  compartment, where death 

will not be happened in these immunized people (Nicho, 2010).  

It is now proved that COVID-19 is preventable through vaccination. If enough people are immune, COVID-19 

will not spread. As COVID-19 is highly contagious, to grow herd immunity, mass people need to be vaccinated 

that will prevent the initial spread of the disease. The model predicts how many people should be vaccinated so 

that the entire community will be in herd immunity. In our model, we consider that our vaccine is 100% efficacy. 

As a result, our vaccine gives permanent immunity to the vaccinated people. Let p is the proportion of the total 

population N is vaccinated, and then ( )p−1  is the proportion left unvaccinated, where 10  p . The vaccinated 

will avoid the susceptible class and move directly to the recovered class. On the other hand, the unvaccinated 

individuals will go into the susceptible class. Therefore, the total populations that are vaccinated is ( )ptaN , 

which will be added in the recovery compartment ( )tR . On the other hand, the unvaccinated populations is 

( )( )ptaN −1 , which still remain in the susceptible compartment ( )tS  
(Porwal et al., 2015). After vaccination the 

equations of SIR model can be written as; 

( )
( )( ) ( ) ( ) ( )tStItbSptaN

dt

tdS
−−−= 1      (29) 

( )
( ) ( ) ( ) ( )tItcItItbS

dt

tdI
−−=       (30) 

( )
( ) ( ) ( )ptaNtRtcI

dt

tdR
+−=  .      (31) 

The flowchart of herd immunity formed by vaccinated people is given in Figure 4. 
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Figure 4. Flowchart of SIR model after vaccination considering death and birth 

 

Theorem 6: In SIR model, assume, 5.0=p , ( ) ( )tItS 4= , and ( ) 0=tR , i.e., ( ) ( ) ( ) ( )tItItStN 5=+= , then, 

c
47

17
= . 

Proof: Dividing (28) by (29) we get, 

( )
( )

( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )tItcItItbS

tStItbSptN

tdI

tdS





−−

−−−
=

1 .   (32) 

Let us consider that there is no more death happen except natural death, i.e., ( ) 0=tR , and ( ) ( ) ( )tItStN += , 

then (32) becomes,  

( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )tItcItItbS

tStItbStIptSp

tdI

tdS





−−

−−−+−
=

11                         

( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )tItcItItbS

tItbStIptpS

tdI

tdS





−−

−−+−
=

1 .   (33) 

Equation (33) is highly non-linear, and we impose a condition to obtain an approximate solution, such that, 

( ) ( )tItS 4= , i.e., susceptible individuals are four times of infected individuals then, 

( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )tItcItItbI

tItbItIptpI

tdI

tdI





−−

−−+−
=

4

4144  

( ) ( )
( ) 



−−

−−+−
=

ctbI

tbIpp

4

414
4  

( ) ( ) ( )tbIppctbI 4144416 −−+−=−−   

( ) pctbI  55420 −+=  

           ( )
b

pc
tI

20

554  −+
= .      (34) 

Dividing (29) by (31) for ( ) ( ) ( ) ( )tItItStN 5=+= , we get, 

( )
( )

( )( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )ptIptStRtcI

tStItbSptIptS

tdR

tdS





++−

−−−+−
=

11

 
( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )ptIptStRtcI

tItbStIptpS

tdR

tdS





++−

−−+−
=

1

.     (35) 

Equation (35) is highly non-linear and we impose two conditions, such that, ( ) ( )tItS 4= , and ( ) ( )tRtI 4=  then, 

( )
( )

( ) ( ) ( ) ( ) ( )

( )
( )

( ) ( )ptIptI
tI

tcI

tItbItIptpI

tdI

tdI





++−

−−+−
=

4
4

414

4

4

 
( ) ( )

ppc

tbIpp






++−

−−+−
=

4
4

414
16

 
( ) pctbI  855164 +−=−  

           ( )
b

pc
tI

4

85165  +−
=

 .     (36) 

Equalize (34) and (36) we get, 

pc
pc




85165
5

554
+−=

−+  

086174 =+− pc  . 

Let 5.0=p , then  

043174 =+−  c   
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c
47

17
=

.      (37) 

In this situation the death rate is 
47

17  times the infection rate, i.e., if 47=c , then 17= . 

7.3 Immunity Loss of Vaccine 

In section 7.2 we have assumed that vaccine is 100% efficacy. In real field, no vaccine gives full protection to 

COVID-19 or other epidemic disease. Therefore, vaccinated individuals are not fully immunized. Overtime the 

immunity due to vaccination will decrease and after a fixed period the immunity of COVID-19 due to 

vaccination will be disappeared. At that situation, the vaccinated people will be susceptible to COVID-19 (Fine 

et al., 2011; Akinyemi et al., 2016). Let 0e  be the rate of immunity loss, then in ( )tR  compartment, ( )teR  

people will reduced due to loss of immunity, and these ( )teR  individuals will add in ( )tS  compartment 

(Milligan & Barrett, 2015). The system of equations in SIR model becomes,  

( )
( )( ) ( ) ( ) ( ) ( )teRtStItbSptaN

dt

tdS
+−−−= 1     (38) 

( )
( ) ( ) ( ) ( )tItcItItbS

dt

tdI
−−=      (39) 

( )
( ) ( ) ( ) ( )teRptaNtRtcI

dt

tdR
−+−=  .    (40) 

The flowchart after immunity loss of vaccine can be shown as in Figure 5; 

 

 
Figure 5. Flowchart of SIR model after immunity loss of vaccine considering death and birth 

 

Theorem 7: In SIR model, if 5.0=p , and ( ) 0=tR , i.e., ( ) ( ) ( ) ( )tItItStN 5=+= , and ( ) ( )tItS 4= , then, 


43

370

43

152
+= ce ,. Further, if 035.0=c , 007.0= , then, 18395.0=e . 

Proof: Dividing (43) by (44) we get, 

( )
( )

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )tItcItItbS

teRtStItbSptaN

tdI

tdS





−−

+−−−
=

1

.   (41) 

Equation (41) is highly non-linear and we impose some conditions to find an approximate solution, such that, 

( ) ( ) ( ) ( )tItItStN 5=+= , and 5.0=p , =a , then (41) gives,  

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )tItcItItbI

teItItbItI

tdI

tdI





−−

+−−
=

4

4

1
4

2

3
4  

( )

( ) 



−−

+−−
=

ctbI

etbI

4

4

1
4

2

3

4  

( ) ectbI
4

1

2

5
420 ++=   

( )
b

ec
tI

20

4

1

2

5
4 ++

=


. 

( )
b

e

bb

c
tI

8085
++=


.     (42) 

Dividing (38) by (42) we get, 
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( )
( )

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )teRptaNtRtcI

teRtStItbSptaN

tdR

tdS

−+−

+−−−
=



1

   

( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )teIptaItItcI

teItItItbItI

tdI

tdI

4

1
5

4

1
4

1
44

2

5

4

1

4

−+−

+−−
=





 

( )

eac

etbI

4

1

2

5

4

1
4

1
44

2

5

16

−+−

+−−
=





 

( ) e
bbb

c
tI

16

17

8

754
−+= 

.     (43) 

Equalizing (41) and (43) we get, 


4

37

5

19

40

43
+=

ce

 


43

370

43

152
+= ce

.     (44) 

For 035.0=c , 007.0= , from (44) we have, 18395.0=e . 

7.4. Re-infected of COVID-19 

A portion of first time infected persons that are recovered may be re-infected again. Some people of the world 

are re-infected again by COVID-19 (Akinyemi et al., 2016). Let 0g  be the rate of re-infected individuals; 

then the ( )tgR  persons will be reduced from ( )tR  
compartment, and these ( )tgR  

people will add in the ( )tI
 

compartment. Of the new re-infected people some may die. Let 0h , be the death rate of the re-infected 

individuals, where h , consequently,
 

( )thI  will be reduced in the ( )tI
 
compartment, consequently, ( )thI  

people added in ( )tR  compartment (Widyaningsih et al., 2018). The system of equations in SIR model becomes; 

( )
( )( ) ( ) ( ) ( ) ( )teRtStItbSptaN

dt

tdS
+−−−= 1

   

(44) 

( )
( ) ( ) ( ) ( ) ( ) ( )tIhtgRtcItItbS

dt

tdI
+−+−= 

    

(45) 

( )
( ) ( ) ( ) ( ) ( )tRgeptaNtcIhc

dt

tdR
++−++=  .

   

(46) 

The flowchart after re-infected by epidemic disease or pandemic becomes as in Figure 6; 

 

 
Figure 6. Flowchart of SIR model after re-infected considering death and birth 

 

Theorem 8: In SIR model, if 5.0=p , and ( ) ( )tRtI 4= , and ( ) ( )tItS 4= , 0g  be the rate of re-infected, and 

0h , be the death rate of the re-infected, 
44

9

4

eg
ch +++−=

 . Also if 035.0=c , 0070.0= , 18395.0=e , let 

00001.0=g , then, 02676.0=h .  

Proof: Dividing (39) by (40) we get, 

( )
( )

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )tIhtgRtcItItbS

teRtStItbSptaN

tdI

tdS

+−+−

+−−−
=



1     (47) 

Equation (40) is highly non-linear and we impose some conditions to find an approximate solution, such that, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tItItItItRtItStN
4

21

4

1
4 =++=++= , ( ) ( )tRtI 4= , and ( ) ( )tItS 4= , and 5.0=p , =a , then (47) 

gives,  
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( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )tIhtgItcItItbI

teItItItbItI

tdI

tdI

+−+−

+−−

=





4

1
4

4

1
44

8

21
4

 

( )

( ) ( )hgctbI

etbI

+−+−

+−−

=





4

1
4

4

1
44

8

21

4

 

( )
b

e

b

h

bb

g

b

c
tI

80580

53

205
+++−=



.     (48) 

Dividing (39) by (41) we get, 

( )
( )

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )tRgeptaNtcIhc

teRtStItbSptaN

tdR

tdS

++−++

+−−−
=



1

 

( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )tIgetItIhc

teItItItbItI

tI

tI

++−++

+−−

=





4

1

8

21
4

1
44

8

21

4

1

4

 

( )

( )gehc

etbI

++−++

+−−

=





4

1

8

21
4

1
44

8

21

16

 

( ) etbIgehc
4

1
4

8

21
44421616 +−=−−++ 

 

( )
b

h

b

c

b

g

b

e

b
tI

44

16

17

32

315
−−++−=



.     (49) 

Equalize (48) and (49) we get, 

b

h

b

e

bb

g

b

c

b

e

b

h

bb

g

b

c 4

16

17

32

3154

80580

53

205
−+−+−=+++−



 

4160

1681

4

eg
ch +−+−=



.     (50) 

We choose, 035.0=c , 0007.0= , 18395.0=e , let 00001.0=g , then from (48) we get, 003636.0=h . 

8. Stability of SIR Model  

For the equilibrium points the equations (20), (21), and (22) should be equated to zero, i.e., 

( ) ( ) ( )
0===

dt

tdS

dt

tdS

dt

tdS

.     (51) 

From (21) we get, 

( )( ) ( ) 0=−− tIctbS   

( )
b

c
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+
=

.       (52) 

From (22) we get, 

( ) ( ) 0=− tRtcI   

( ) ( )tI
c

tR


=
.       (53) 

From (20) we get, 
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9. Basic Reproductive Rate in SIR Model 

In epidemiology, the basic reproduction number is the expected number of cases directly generated by one case 

in a population where all the individuals are susceptible to infection (Fraser et al., 2009). In epidemiology, it is 
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considered as one of the most important quantities and the number of invectives of it is produced by a primary 

infective in a fully susceptible virgin population (Ebraheem et al., 2021). It is not a biological constant for a 

pathogen, because it is affected by other factors, such as environmental conditions and the behavior of the 

infected population. It does not by itself give an estimate of how fast an infection spreads in the population 

(Delamater et al., 2019). There is no general method to calculate the basic reproduction number. It is widely 

varies depending on country, culture, calculation, stage of the outbreak. Different authors take different methods 

to determine 
0R  for controlling the disease (Linka et al., 2020). If 10 R , the infection is faded out in a 

population. If the infected individuals present in the population, there will be an epidemic if and only if 0
dt

dI

 (Cao & Zhou, 2013). From (31) we get,  

( ) ( ) ( ) ( )tIctItbS +  
( ) ( )+ ctbS .       (56)  

Let us consider initially at 0=t , death rate, 0= , then from (56) we get (Bhattacharya et al., 2015),   

cbS 0 , i.e., 
00 −cbS

.      (57)  

The initial behavior of COVID-19 is governed by the nature of ( )cbS −0
, i.e., of 








−10

c

S
b .  In SIR model, the 

term 
c

S
b 0  is called basic reproductive rate at 0=t  and is denoted by (van den Driessche, 2017), 

( )tS

S

r

S

c

S
bR 000

0 ===

.     (58) 

A key parameter in epidemiology is 
0R  that represents the initial rate of spread of the disease. It is a threshold 

parameter for the SIR model (Khan et al., 2014). If 10 R , disease free equilibrium of COVID-19 will be 

locally asymptotically stable. Then the number of infectious individuals decreases monotonically to zero and the 

disease will not spread. In this case, the introduced infected will recover or die without being able to replace 

themselves by new infections. If 
10 R

, the COVID-19 will be unstable and number of infected persons will 

increase and the disease will spread. For 10 =R , there will be a sharp threshold between the disease dying out or 

causing an epidemic (Heffernan et al., 2005; Linka et al., 2020).  

10. Conclusions and Recommendation 

In this study we have tried to discuss aspects of SIR model for the pandemic outbreak of COVID-19. It is 

considered as a powerful and flexible tool to understand the spread of disease and performing public health 

interventions. We observe that the SIR model provides a basic framework for the investigation of the pandemic 

COVID-19. Proper guidance and advices can help individuals to prevent and control of global pandemic in 

timely. In the model, the growth of infections and the duration of the pandemic COVID-19 are analyzed with 

detail mathematical calculations. We have seen that a susceptible individual becomes infectious after the buildup 

exposure is formed larger than its resistance level. In this paper, the vaccination, herd immunity grows and loss, 

re-infection, and abolish policy COVID-19 are discussed in some details. In this study we have tried to analyze 

the growth of infections, transmission, fatality, and the duration of the COVID-19 outbreak with the help of 

mathematical and theoretical analysis. We have also observed that if more people are vaccinated, more herd 

immunity will grow against highly contagious disease COVID-19. Vaccination program will be success only if a 

large portion of the population receives the vaccines. So that, to make the world COVID-19 free, a large portion 

of the global population irrespective of nation, religion, region, poor, and rich, must bring under vaccination. The 

public health officials, social workers, governments and common people must encourage actively others for 

vaccinating all the people.  
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