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Abstract 

Background: Recently, early non-invasive identification of Ki-67 levels and histological subtypes in non-small 

cell lung cancer remains a significant obstacle. With the application of radiomics in cancer diagnosis and 

treatment, several researchers have investigated the accuracy of radiomics for non-invasive detection of Ki-67 

levels and histological subtypes in lung cancer. Nonetheless, there is a dearth of systematic evidence. Hence, we 

reviewed the value and accuracy of radiomics for early non-invasive identification of Ki-67 levels and 

histological subtypes in lung cancer. Methods: PubMed, Cochrane, Embase, and Web of Science were 

comprehensively searched till 10 December 2023, using the Radiomics Risk of Bias Assessment Tool. Subgroup 

analyses of modeling variables were performed. Results: Thirty-three papers were finally included, with 13 for 

identifying adenocarcinoma and squamous, and 12 for identifying different pathotypes. In the validation set of 

the dichotomous task, the meta-analysis results for discriminating high Ki-67 levels yielded 0.77 c-index (95% 

CI: 0.74-0.79), 0.75 sensitivity (95% CI: 0.70-0.79), and 0.74 specificity (95% CI: 0.70-0.78). The validation set 

analysis in discriminating lung adenocarcinoma from squamous cell carcinoma yielded 0.78 c-index (95% CI: 

0.76-0.80), 0.78 sensitivity (95% CI: 0.70-0.84), and 0.79 specificity (95% CI: 0.73-0.85). Conclusion: 

Radiomics is tool for non-invasively identifying high Ki-67 levels in lung cancer and identifying different 

subtypes. However, this is based on limited evidence with a high risk of bias in a subset of studies where 

radiomics has been performed. Therefore, more studies with larger samples are required to validate the results 

and develop intelligent readable tools. 
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1. Introduction 

Lung cancer is the predominant contributor to cancer morbidity and mortality, with about 2.5 million new cases 

and over 1.8 million deaths worldwide in 2024, and the most common histologic subtype is lung 

adenocarcinoma (LADC) (F. Bray, et al., 2024). Currently, surgical interventions remain a cornerstone, including 

total lung, lobectomy, segmental resection, and wedge resection. The advent of minimally invasive techniques 

has popularized sub-lobar resection for small early-stage lung cancers (J.S. Donington, et al., 2018; M.K. Kamel 

et al., 2022; L. Crinò et al., 2010). In addition to surgical treatment, alternative modalities like chemotherapy, 

radiotherapy, immunotherapy, and targeted therapy are also available for the comprehensive management of lung 

cancer (N. Duma, R. Santana-Davila & J.R. Molina, 2019), which comprises diverse subtypes necessitating 

individualized treatment (W.D. Travis et al., 2016). 

The 2021 WHO histologic classification (M.S. Tsao et al., 2022) has clarified lung cancer into small cell lung 
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cancer and non-small cell lung cancer (NSCLC), of which NSCLC accounts for nearly 80-85%, including 

LADC, lung squamous cell carcinomas (LSCC), and other histologic subtypes. The treatment modalities for 

different subtypes are diverse, and the treatment for NSCLC relies on molecular markers (M. Jamal-Hanjani et 

al., 2015). Ki-67 is the extensively utilized protein marker for assessing tumor cell proliferation (Z. Li et al., 

2021; A. Warth et al., 2014), and its elevation connects with metastasis and unfavorable outcomes (Z. Li et al., 

2021; D.M. Wei et al., 2018). Thus, it is valuable to efficiently identify Ki-67 and histological subtypes before 

surgery. Currently, post-surgical pathology and biopsy assessment remain the gold standard for identifying tumor 

histological subtypes and Ki-67 levels. Nevertheless, these methods are invasive and some tumors are not 

available for biopsy or are resistant to invasive testing. Therefore, exploring an efficient non-invasive approach 

to precisely predict lung cancer pathologic subtypes and Ki-67 expression is of profound clinical significance. 

Currently, radiomics has garnered significant interest and investigation in the diagnosis and efficacy evaluation 

of lung cancer. This approach relies on automated high-throughput extraction of quantitative features from 

numerous medical images to quantitatively analyze medical image data and provide doctors with more and better 

clinical information (P. Lambin et al., 2012). Several studies have utilized CT image-based radiomic profiling to 

preoperatively forecast Ki-67 levels in lung cancer (Q. Fu et al., 2021; F. Liu et al., 2023; J. Bao et al., 2022). 

Radiomics holds immense promise in categorizing lung cancer histologic subtypes based on CT images (A. 

Brunetti et al., 2022; F. Song et al., 2023; H.H. Li et al., 2021). Nevertheless, there remains a dearth of 

comprehensive evidence regarding its efficacy in radiomics. Hence, this paper was conducted to address this 

gap. 

2. Material and Methods 

2.1 Study Registration 

Our study followed the PRISMA guidelines and was registered on Prospero. 

2.2 Eligibility Criteria 

The articles were enrolled if  

(1) The study subjects were confirmed NSCLC patients. 

(2) In the original study, machine learning (ML) models covering radiomics identification of Ki-67 and 

histological subtypes were constructed in full. 

(3) The types of studies covered case-control studies, cohort studies, and cross-sectional studies. 

(4) The article was reported in English. 

The articles were excluded for  

(1) Meta, review, guideline, or expert opinion; 

(2) Only differential factor analysis and no complete ML model; 

(3) Lacking endpoint indicators of predictive accuracy of ML models (accuracy, c-index, Roc, c-statistic, 

sensitivity, specificity, confusion matrix, recall, precision, F1 score, diagnostic four-cell table, Calibration curve); 

(4) sample size <20 cases; 

(5) Only segmentation of images. 

3. Search Strategy 

PubMed, Cochrane, Embase, and Web of Science were comprehensively retrieved as of 10 December 2023 

using subject plus free word searching, with no restriction on region, language, or years of experience (A 

comprehensive search strategy is presented in Table S1). 

3.1 Article Selection and Data Extraction  

All retrieved publications were imported into Endnote. The titles or abstracts were read after excluding 

duplicates. The original literature that initially matched was downloaded for full-text assessment. Before data 

extraction, we created a standard spreadsheet containing title, first author, publication year, country, tumor type, 

study type, patient source, diagnostic purpose, tumor stage, radiomics source, recording of complete image 

protocols, number of imaging investigators, pre-tests with different imaging parameters, repeated measurement 

trials at different times, imaging region of interest segmentation software, number of all ending time cases, 

number of all cases, number of ending event cases in training sets, number of cases in training sets, generation 

method of validation sets, number of ending event cases in validation sets, number of cases in validation sets, 

method of variable screening, model type, construction of radiomics scores, assessment of overfitting, public 

availability of code and data, and model rating metrics. The above article selection and data extraction were 

undertaken independently by two investigators, and a third investigator decided on any disputes after 
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examination. 

3.2 Assessment of Study Quality 

The methodological quality and risk of bias of enrolled literature were appraised by 2 investigators using the 

radiomics quality score (RQS), and cross-checked upon completion. Any disputes were tackled via discussion 

with a third investigator. 

3.3 Outcomes 

Our outcome metrics encompassed c-index, sensitivity, and specificity to reflect the power of radiomics in 

identifying histological subtypes and Ki-67 in lung cancer. 

3.4 Synthesis Methods 

A meta-analysis of c-index was performed by which the overall accuracy of ML models was assessed. For some 

original studies, when 95% confidence intervals (CI) and standard errors were missed, the standard errors were 

estimated according to Debray TP et al. (2019) Given the different variables and parameters across ML models, 

random-effects models were utilized in our meta-analysis of c-index, while bivariate mixed-effects models were 

utilized for meta-analyses of sensitivity and specificity based on the diagnostic quadrangle table. If the 

diagnostic quadrangle table was not reported, it was calculated using the following two ways: 1) using the 

combination of the number of cases with sensitivity, specificity, and precision (Precision); 2) based on the best 

Youden index to extract the sensitivity and specificity, which were then combined with the number of cases for 

calculation. The meta-analysis was implemented in R4.2.0. 

4. Results 

4.1 Study Selection 

8,557 documents were acquired from various databases, with 2,590 duplicates excluded. 1,490 duplicates were 

automatically flagged by the software, while 2,441 duplicates were flagged manually. The remaining 5,967 

documents were assessed for full texts, with 5,919 excluded for irrelevant topics. Among the remaining 48 

preliminary matches, articles with missing data, lacking relevant outcome indicators, and articles related to 

PET-CT studies were excluded. Thirty-three radiomics articles were finally included (Q. Fu et al., 2021; F. Liu et 

al., 2023; J. Bao et al., 2022; A. Brunetti et al., 2022; F. Song et al., 2023; H.H. Li et al., 2021; H. Sun et al., 

2023; A. Haga et al., 2018; J. Lin et al., 2023; C. Alvarez-Jimenez et al., 2020; B. Dunn et al., 2023; H. Liu et 

al., 2019; R. Patil et al., 2016; X. Tang et al., 2022; P. Marentakis et al., 2021; M. Zhu et al., 2022; D.D. Yu et 

al., 2017; M. Yang et al., 2023; F.C. Yang et al., 2021; J. Yan et al., 2022; F. Song et al., 2023; G. Pasini et al., 

2023; J. Liu et al., 2019; H. Liu et al., 2021; E. Linning et al., 2019; Z. Khodabakhshi et al., 2021; R. Han et 

al., 2020; Y.X. Guo et al., 2021; Q.B. Gu et al., 2019; L.N. E et al., 2019; Y. Dong et al., 2022; X.J. Chu et al., 

2023; Z.Y. Chen et al., 2022) (Figure 1). 
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Figure 1. Article screening process 

 

4.2 Study Characteristics 

33 papers were included involving 11,037 patients with lung cancer. Of these, 23 articles (F. Liu et al., 2023; F. 

Song et al., 2023; H. Sun et al., 2023; A. Haga et al., 2018; J. Lin et al., 2023; C. Alvarez-Jimenez et al., 2020; 

H. Liu et al., 2019; R. Patil et al., 2016; X. Tang et al., 2022; P. Marentakis et al., 2021; D.D. Yu et al., 2017; M. 

Yang et al., 2023; F.C. Yang et al., 2021; F. Song et al., 2023; G. Pasini et al., 2023; J. Liu et al., 2019; H. Liu et 

al., 2021; Z. Khodabakhshi et al., 2021; R. Han et al., 2020; Q.B. Gu et al., 2019; Y. Dong et al., 2022; X.J. Chu 

et al., 2023; Z.Y. Chen et al., 2022) focused on NSCLC, 7 (Q. Fu et al., 2021; A. Brunetti et al., 2022; H.H. Li et 

al., 2021; B. Dunn et al., 2023; E. Linning et al., 2019; Y.X. Guo et al., 2021; L.N. E et al., 2019) focused on 

unspecified types of lung cancer, and 3 (J. Bao et al., 2022; T.P. Debray et al., 2019; J. Yan, et al., 2022) focused 

on LADC. Most were case-control studies. Of the included studies, 5 (F. Liu et al., 2023; A. Brunetti et al., 2022; 

F.C. Yang et al., 2021; Y. Dong et al., 2022; X.J. Chu et al., 2023) were derived from multicenter databases, 8 (J. 

Lin et al., 2023; C. Alvarez-Jimenez et al., 2020; B. Dunn et al., 2023; R. Patil et al., 2016; P. Marentakis et al., 

2021; F. Song et al., 2023; G. Pasini et al., 2023; J. Liu et al., 2019) were derived from registry databases, 1 (F. 
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Song et al., 2023) was derived from a multicenter and registry database, and the remaining 19 were all from 

single-center databases. In terms of diagnostic purposes, 8 (Q. Fu et al., 2021; F. Liu et al., 2023; J. Bao et al., 

2022; H. Sun et al., 2023; M. Zhu et al., 2022; J. Yan et al., 2022; Q.B. Gu et al., 2019; Y. Dong et al., 2022) 

were concerned with Ki-67 expression, while 25 were designed to differentiate pathological subtypes. The main 

pathotypes included LADC, LSCC, and lung adeno-squamous carcinoma (LASC). Thirteen (A. Brunetti et al., 

2022; F. Song et al., 2023; C. Alvarez-Jimenez et al., 2020; H. Liu et al., 2019; X. Tang et al., 2022; P. 

Marentakis et al., 2021; D.D. Yu et al., 2017; M. Yang et al., 2023; F.C. Yang et al., 2021; F. Song et al., 2023; H. 

Liu et al., 2021; R. Han et al., 2020; Z.Y. Chen et al., 2022) articles were designed to differentiate between ADC 

and SCC, with a two-classification primary diagnosis. Additionally, 12 articles (A. Brunetti et al., 2022; A. Haga 

et al., 2018; J. Lin et al., 2023; B. Dunn et al., 2016; R. Patil et al., 2016; G. Pasini et al., 2023; J. Liu et al., 

2019; E. Linning et al., 2019; Z. Khodabakhshi et al., 2021; Y.X. Guo et al., 2021; L.N. E et al., 2019; X.J. Chu 

et al., 2023) differentiated between ADC, SCC, and other pathotypes. Regarding cancer stages, 13 (J. Bao et al., 

2022; A. Brunetti et al., 2022; H. Sun et al., 2023; A. Haga et al., 2018; J. Lin et al., 2023; C. Alvarez-Jimenez et 

al., 2020; B. Dunn et al., 2023; R. Patil et al., 2016; P. Marentakis et al., 2021; J. Yan et al., 2022; Y.X. Guo et 

al., 2021; L.N. E et al., 2019; Y. Dong, et al., 2022) focused on stage I-IV tumors, three (J. Bao et al., 2022; A. 

Haga et al., 2018; J. Yan et al., 2022) focused on early-stage tumors (stages I-II), and 20 papers lacked explicit 

tumor stage information. Most radiomic data were derived from CT or MRI scans, with most being CT scans. 

Additionally, two studies (H. Liu et al., 2019; R. Han et al., 2020) employed CE-CT, two (H. Sun et al., 2023; 

Z.Y. Chen et al.,2022) employed DECT, and one study combined both CT and MRI data. 

Of the 11,037 cases included, 4,273 were ADC, 3,142 were SCC, 460 were small-cell lung carcinomas (SCLC), 

540 were large-cell carcinomas (LCC), 81 were ASC, and 235 were not otherwise specified (NOS). In the 

validation method of the model, 17 articles (Q. Fu et al., 2021; F. Liu et al., 2023; J. Bao et al., 2022; H. Sun et 

al., 2023; A. Haga et al., 2018; J. Lin et al., 2023; X. Tang et al., 2022; P. Marentakis et al., 2021; M. Zhu et al., 

2022; M. Yang et al., 2023; J. Yan et al., 2022; F. Song et al., 2023; G. Pasini et al., 2023; H. Liu et al., 2021; R. 

Han et al., 2020; Y.X. Guo et al., 2021; Z.Y. Chen et al., 2022) used the internal validation method of random 

sampling, 12 articles (H.H. Li et al., 2021; C. Alvarez-Jimenez et al., 2020; B. Dunn et al., 2023; H. Liu et al., 

2019; R. Patil et al., 2016; D.D. Yu et al., 2017; F.C. Yang et al., 2021; J. Liu et al., 2019; E. Linning et al., 2019; 

Z. Khodabakhshi et al., 2021; Q.B. Gu et al., 2019; L.N. E et al., 2019) used the k-fold cross-validation method, 

and 4 articles (A. Brunetti et al., 2022; F. Song et al., 2023; Y. Dong et al., 2022; X.J. Chu et al., 2023) used the 

external validation method. Among the models, the most common ones were logistic regression, support vector 

machine, and random forest models (Table S2). 

4.3 Assessment of Study Quality 

Article quality was evaluated using the RQS scale. Seven studies did not mention imaging protocols and 

therefore did not score in this regard. None of the studies conducted pre-tests with different parameters and 

repeated measures tests with different parameters, so none of them scored. In terms of the number of participants 

of the imager, 19 articles explicitly described multiple participants, and 10 articles did not explicitly describe the 

number of participants involved in the image segmentation, and four articles described that only one person 

performed the segmentation, so these articles were not scored in this regard. Regarding the validation set, 6 

articles were externally validated in multiple centers, so they were scored 4-5. Furthermore, some included 

models lacked a region of interest (ROI) region segmentation protocol for images, as well as code for texture 

extraction and modeling. Consequently, no score was given for these entries. Finally, the mean score for enrolled 

articles was 7.12. 

4.4 Meta-Analysis 

4.4.1 Ki-67 

1) Synthesized Results 

A random-effects model was employed for meta-analysis to identify Ki-67 expression. In the training set, the 

ML model for Ki-67 levels in lung cancer showed 0.82 c-index (95% CI: 0.78-0.85). The clinical features-based 

ML models manifested 0.75 c-index (95%CI: 0.67-0.82), the model based on radiomics features demonstrated 

0.84 c-index (95%CI: 0.80-0.88), and the model of radiomics combined with clinical features yielded 0.83 

c-index (95%CI: 0.74-0.93) (Figure 2). 
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Figure 2. Forest plot of radiomics prediction of LADC Ki-67 meta-analysis in the test sets 

 

In the training set, the model based on clinical features alone yielded 0.70 sensitivity (95% CI: 0.64-0.76) and 

0.74 specificity (95% CI: 0.57-0.86). Radiomics-based models demonstrated 0.80 sensitivity (95% CI: 

0.76-0.84) and 0.75 specificity (95% CI: 0.69-0.80). The model incorporated radiomics and clinical features 

demonstrated 0.77 sensitivity (95% CI: 0.71-0.81) and 0.82 specificity (95% CI: 0.73-0.88) (Figure S1-3). 

In the validation set, the ML model in forecasting Ki-67 levels in lung cancer exhibited 0.77 c-index (95% CI: 

0.74-0.79). The clinical features-based ML models showcased 0.72 c-index (95% CI: 0.68-0.75) radiomics-based 

model displayed 0.76 c-index (95% CI: 0.72-0.80), while radiomics + clinical features model manifested 0.81 

c-index (95% CI: 0.75-0.87) (Figure 3). 
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Figure 3. Forest plot of radiomics prediction of LADC ki-67 meta-analysis in the validation sets 

 

In the validation set, the clinical features-based model yielded 0.68 sensitivity (95% CI: 0.58-0.76) and 0.70 

specificity (95% CI: 0.63-0.76). The radiomics-based model exhibited 0.76 sensitivity (95% CI: 0.71-0.81) and 

0.74 specificity (95% CI: 0.67-0.80). The combined model demonstrated 0.79 sensitivity (95% CI: 0.72-0.84) 

and 0.78 specificity (95% CI: 0.71-0.84) (Figure S4-6). 

2) Reporting Biases 

In the training set, the funnel plots showed no publication bias, and Egger’s test revealed P= 0.849 (Figure S7). 

In the validation set, funnel plots showed a publication bias, and Egger’s test revealed P= 0.001 (Figure S8). 

4.5 Histological Subtypes 

4.5.1 Synthesized Results 

In all included articles, radiomics was employed solely to identify the histological subtypes. In the training set, 

the radiomics-based pooling demonstrated 0.87 c-index (95% CI: 0.86-0.89) (Figure 4), with 0.82 sensitivity 

(95% CI: 0.75-0.87) and 0.69 specificity (0.61-0.75) (Figure S9). Additionally, logistic regression and support 

vector machine showed c-indexes of 0.89 (95% CI: 0.85-0.92) and 0.82 (95% CI: 0.85-0.92), respectively. In the 

validation set, the c-index based on radiomics pooling was 0.78 (95% CI: 0.76-0.80) (Figure 5), with 0.78 

sensitivity (95% CI: 0.70-0.84) and 0.79 specificity (95% CI: 0.73-0.85) (Figure S10). 
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Figure 4. Forest plot of histological subtypes of LADC predicted by radiomics in the test sets 
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Figure 5. Forest plot of histological subtypes of LADC predicted by radiomics in the validation sets 

 

4.5.2 Reporting Biases 

In the training set, the funnel plots showed a publication bias, and Egger’s test revealed P = 0.0001 (Figure S11). 

In the validation set, funnel plots noted a publication bias, and Egger’s test revealed P = 0.034 (Figure S12). 

4.6 Multi-classification of Pathological Types 

In our study, 12 articles employed a multiclassification approach to identify distinct pathological subtypes, with 

3 presenting confusion matrices. The types identified in these 3 articles were predominantly LADC, LSCC, 

LCC, LASC, and NOS. The discriminatory accuracy of LADC was 0.76, 0.60, 0.58, 0.71, SCC was 0.94, 0.81, 

0.78, 0.76, LCC was 0.78, 0.73, 0.75, and LASC was 0.67, respectively. However, the other articles did not 

provide multiclassification accuracies, so they cannot be discussed further here. 

5. Discussion 

5.1 Summary of the Main Findings 

ML is effective in identifying Ki-67 levels in lung cancer and in differentiating between subtypes. In the 

validation set, the c-index for Ki-67 expression was 0.76 (95% CI: 0.72-0.80) for radiomics and 0.81 (95% CI: 
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0.75-0.87) for radiomics + clinical features. In histological subtypes, the included studies constructed ML 

models for identifying histological subtypes based on the radiomics approach, but there were no studies on 

clinical features or clinical features + radiomics to construct models. The c-index for the identification of 

pathotypes was 0.78 (95% CI: 0.76-0.80). 

5.2 Comparison with Other Reviews 

Research has investigated the potential of a preoperative test for Ki-67 and histological subtypes. Wei et al. 

(2018) unveiled that Ki-67 elevation was correlated with gender, age, smoking, tumor size, and pathological 

stage. Liu et al. (2023) demonstrated that nomograms integrating imaging and histological features with clinical 

characteristics may represent a promising non-invasive approach for forecasting Ki-67 levels in individuals with 

pure solid NSCLC. Zhu et al. (2022) initially investigated the power of intra- and perinodal radiographic features 

in forecasting Ki-67 levels, with an AUC of 0.731 (0.662-0.799). While Yao et al. (2022) indicated that 

18F-FDG PET/CT-based imaging histological features demonstrated excellent performance in predicting Ki67 

expression, with an AUC of 0.85 (95% CI, 0.71-0.98), 0.83 accuracy (95% CI, 0.66-0.93), 0.94 sensitivity, and 

0.72 specificity in the test set. 

In terms of histological subtypes, most studies (H. Liu et al., 2019; X. Tang et al., 2022; D.D. Yu et al., 2017; M. 

Saad & T.S. Choi, 2018; X. Zhu et al., 2018) concentrated on the classification of LSCC and LADC and 

indicated that radiomics may be a valuable approach for differentiating between these two types before biopsy 

and surgery. Saad et al. (2018) proposed a computational method that combined computerized subtyping and 

prognosis, which was effective in subtyping patients with LADC and LSCC with an accuracy of 73.3% to 93%. 

Zhu et al. (2018) developed an imaging histological signature comprising 5 quantitative CT image features to 

differentiate ADC from SCC preoperatively. This approach exhibited satisfactory performance in both the 

validation and training sets, with 0.828 sensitivity and 0.900 specificity in the validation set.  

Furthermore, lung cancer encompasses diverse histological subtypes, including LCC, LASC, and NOS. These 

different types exhibit varying treatment and prognosis profiles, underscoring the challenges in distinguishing 

between LADC and LSCC distinction. Consequently, some researchers have conducted studies on classifying 

lung cancer into multiple categories. Chu et al. (2023) used an optimal three-class classification model to 

distinguish LASC from LADC or LSCC and achieved an AUC of 0.89 and an accuracy of 0.81 in an external 

validation set. Dunn et al. (2023) utilized clinical CT/PET images for the first to classify 3 histological subtypes 

of lung cancer, with an accuracy of 92.7% and an AUC of 0.97. Consequently, further studies on multiple 

classifications of lung cancer are required to provide greater clinical value. 

Clinical features are pivotal in the identification of Ki-67. Our study sought to ascertain the impact of clinical 

features, radiomics features, and radiomics + clinical features in identifying Ki-67. The findings indicate that 

radiomics + clinical features may provide increased predictive precision in identifying Ki-67 expression. 

Nevertheless, these results are based on limited evidence, highlighting the necessity for additional research in 

future investigations. Moreover, clinical characteristics were not identified for histological subtypes, possibly 

due to the lack of clear distinctions between different stages of disease progression. 

5.3 Advantages and Limitations 

This paper presents the initial investigation into the value of radiomics for Ki-67 expression and histological 

subtypes. However, this study has the following limitations: Firstly, about Ki-67 expression, there may be some 

differences in the cut-off thresholds across studies. Due to the limited included studies, we failed to discuss the 

impact of these differences on model construction. Secondly, in the identification of Ki-67, we did not further 

discuss the predictive power of the models with different variables owing to the limited number of models. 

Thirdly, the included articles only employed ML models constructed by radiomics for pathotype identification. 

Consequently, the original studies failed to acknowledge the crucial role of modeling variables in pathotyping, 

resulting in a lack of further discussion in our review. Fourthly, the models included were primarily validated 

through random sampling methods, with a notable absence of external validation from multiple centers. 

6. Conclusions 

Radiomics serves as a valuable instrument for the non-invasive detection of high Ki-67 levels in lung cancer, 

showcasing significant accuracy in identifying different lung cancer pathotypes. However, the current findings 

are grounded on restricted evidence, presenting a notable risk of bias in certain studies that have employed 

radiomics. Therefore, future research endeavors should prioritize the validation of these findings through larger 

samples and the development of an intelligent readable tool. 
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Appendix 

Table S1. Literature search strategy 

1) Pubmed 

Search number Query Results 

#1 “Lung Neoplasms” [Mesh] 278,964 
 

#2 

((((((((((((((((((((((((((((((Pulmonary Neoplasms[Title/Abstract]) OR (Lung 

Neoplasm[Title/Abstract])) OR (Pulmonary Neoplasm[Title/Abstract])) OR 

(Lung Cancer[Title/Abstract])) OR (Lung Cancers[Title/Abstract])) OR 

(Pulmonary Cancer[Title/Abstract])) OR (Lung Carcinoma[Title/Abstract])) OR 

(Lung Carcinomas[Title/Abstract])) OR (Pulmonary Cancer[Title/Abstract])) 

OR (Pulmonary Cancers[Title/Abstract])) OR (Cancer of the 

Lung[Title/Abstract])) OR (Cancer of Lung[Title/Abstract])) OR 

(Adenocarcinoma of Lung[Title/Abstract])) OR (Lung 

Adenocarcinomas[Title/Abstract])) OR (Lung Adenocarcinoma[Title/Abstract])) 

OR (Small Cell Cancer Of The Lung[Title/Abstract])) OR (Oat Cell Carcinoma 

of Lung[Title/Abstract])) OR (lung tumor[Title/Abstract])) OR (pulmonary 

tumour[Title/Abstract])) OR (pulmonary tumor[Title/Abstract])) OR 

(broncho-pulmonary neoplasm[Title/Abstract])) OR (broncho-pulmonary 

tumor[Title/Abstract])) OR (bronchopulmonary neoplasia[Title/Abstract])) OR 

(bronchopulmonary neoplasm[Title/Abstract])) OR (bronchopulmonary 

tumor[Title/Abstract])) OR (lung neoplasia[Title/Abstract])) OR (lung 

tumour[Title/Abstract])) OR (pulmonary neoplasia[Title/Abstract])) OR 

(broncho-pulmonary cancer[Title/Abstract])) OR (bronchopulmonary 

cancer[Title/Abstract])) OR (NSCLC[Title/Abstract]) 

251,435 

#3 

(“Lung Neoplasms”[Mesh]) OR (((((((((((((((((((((((((((((((Pulmonary 

Neoplasms[Title/Abstract]) OR (Lung Neoplasm[Title/Abstract])) OR 

(Pulmonary Neoplasm[Title/Abstract])) OR (Lung Cancer[Title/Abstract])) OR 

(Lung Cancers[Title/Abstract])) OR (Pulmonary Cancer[Title/Abstract])) OR 

(Lung Carcinoma[Title/Abstract])) OR (Lung Carcinomas[Title/Abstract])) OR 

(Pulmonary Cancer[Title/Abstract])) OR (Pulmonary Cancers[Title/Abstract])) 

OR (Cancer of the Lung[Title/Abstract])) OR (Cancer of Lung[Title/Abstract])) 

OR (Adenocarcinoma of Lung[Title/Abstract])) OR (Lung 

Adenocarcinomas[Title/Abstract])) OR (Lung Adenocarcinoma[Title/Abstract])) 

OR (Small Cell Cancer Of The Lung[Title/Abstract])) OR (Oat Cell Carcinoma 

of Lung[Title/Abstract])) OR (lung tumor[Title/Abstract])) OR (pulmonary 

tumour[Title/Abstract])) OR (pulmonary tumor[Title/Abstract])) OR 

(broncho-pulmonary neoplasm[Title/Abstract])) OR (broncho-pulmonary 

tumor[Title/Abstract])) OR (bronchopulmonary neoplasia[Title/Abstract])) OR 

(bronchopulmonary neoplasm[Title/Abstract])) OR (bronchopulmonary 

363,334 
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tumor[Title/Abstract])) OR (lung neoplasia[Title/Abstract])) OR (lung 

tumour[Title/Abstract])) OR (pulmonary neoplasia[Title/Abstract])) OR 

(broncho-pulmonary cancer[Title/Abstract])) OR (bronchopulmonary 

cancer[Title/Abstract])) OR (NSCLC[Title/Abstract])) 

#4 

((((Radiomics[Title/Abstract]) OR (radiomic[Title/Abstract])) OR 

(radiogenomic[Title/Abstract])) OR (radiomics-based[Title/Abstract])) OR 

(Texture[Title/Abstract]) 

50,443 

#5 

((“Lung Neoplasms”[Mesh]) OR (((((((((((((((((((((((((((((((Pulmonary 

Neoplasms[Title/Abstract]) OR (Lung Neoplasm[Title/Abstract])) OR 

(Pulmonary Neoplasm[Title/Abstract])) OR (Lung Cancer[Title/Abstract])) OR 

(Lung Cancers[Title/Abstract])) OR (Pulmonary Cancer[Title/Abstract])) OR 

(Lung Carcinoma[Title/Abstract])) OR (Lung Carcinomas[Title/Abstract])) OR 

(Pulmonary Cancer[Title/Abstract])) OR (Pulmonary Cancers[Title/Abstract])) 

OR (Cancer of the Lung[Title/Abstract])) OR (Cancer of Lung[Title/Abstract])) 

OR (Adenocarcinoma of Lung[Title/Abstract])) OR (Lung 

Adenocarcinomas[Title/Abstract])) OR (Lung Adenocarcinoma[Title/Abstract])) 

OR (Small Cell Cancer Of The Lung[Title/Abstract])) OR (Oat Cell Carcinoma 

of Lung[Title/Abstract])) OR (lung tumor[Title/Abstract])) OR (pulmonary 

tumour[Title/Abstract])) OR (pulmonary tumor[Title/Abstract])) OR 

(broncho-pulmonary neoplasm[Title/Abstract])) OR (broncho-pulmonary 

tumor[Title/Abstract])) OR (bronchopulmonary neoplasia[Title/Abstract])) OR 

(bronchopulmonary neoplasm[Title/Abstract])) OR (bronchopulmonary 

tumor[Title/Abstract])) OR (lung neoplasia[Title/Abstract])) OR (lung 

tumour[Title/Abstract])) OR (pulmonary neoplasia[Title/Abstract])) OR 

(broncho-pulmonary cancer[Title/Abstract])) OR (bronchopulmonary 

cancer[Title/Abstract])) OR (NSCLC[Title/Abstract]))) AND 

(((((Radiomics[Title/Abstract]) OR (radiomic[Title/Abstract])) OR 

(radiogenomic[Title/Abstract])) OR (radiomics-based[Title/Abstract])) OR 

(Texture[Title/Abstract])) 

1,844 

 

2) Cochrane 

Search number Query Results 

#1 MeSH descriptor: [Lung Neoplasms] explode all trees 10639 

#2 

(Lung Neoplasms): ti,ab,kw OR (Pulmonary Neoplasms):ti,ab,kw OR (Lung 

Neoplasm):ti,ab,kw OR (Pulmonary Neoplasm):ti,ab,kw OR (Lung 

Cancer):ti,ab,kw 

33016 

#3 

(Lung Cancers): ti,ab,kw OR (Pulmonary Cancer):ti,ab,kw OR (Lung 

Carcinoma):ti,ab,kw OR (Lung Carcinomas):ti,ab,kw OR (Pulmonary 

Cancer):ti,ab,kw 

15870 

#4 

(Pulmonary Cancers): ti,ab,kw OR (Cancer of the Lung):ti,ab,kw OR (Cancer of 

Lung):ti,ab,kw OR (Adenocarcinoma of Lung):ti,ab,kw OR (Lung 

Adenocarcinomas):ti,ab,kw 

30043 

#5 

(Lung Adenocarcinoma): ti,ab,kw OR (Small Cell Cancer Of The 

Lung):ti,ab,kw OR (Oat Cell Carcinoma of Lung):ti,ab,kw OR (lung 

tumor):ti,ab,kw OR (pulmonary tumour):ti,ab,kw 

22716 

#6 

(pulmonary tumor): ti,ab,kw OR (broncho-pulmonary neoplasm):ti,ab,kw OR 

(broncho-pulmonary tumor):ti,ab,kw OR (broncho-pulmonary 

neoplasia):ti,ab,kw OR (bronchopulmonary neoplasm):ti,ab,kw 

2040 

#7 

(bronchopulmonary tumor): ti,ab,kw OR (lung neoplasia):ti,ab,kw OR (lung 

tumour):ti,ab,kw OR (pulmonary neoplasia):ti,ab,kw OR (broncho-pulmonary 

cancer):ti,ab,kw 

10672 

#8 (bronchopulmonary cancer): ti,ab,kw OR (NSCLC):ti,ab,kw 11646 

#9 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 36575 
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#10 
(Radiomics): ti,ab,kw OR (radiomic):ti,ab,kw OR (radiogenomic):ti,ab,kw OR 

(radiomics-based):ti,ab,kw OR (Texture):ti,ab,kw 
2594 

#11 #9 AND #10 153 

 

3) Embase 

Search number Query Results 

#1 ‘lung tumor’/exp 564875 

#2 

‘lung neoplasms’:ab,ti OR ‘pulmonary neoplasms’:ab,ti OR ‘lung 

neoplasm’:ab,ti OR ‘pulmonary neoplasm’:ab,ti OR ‘lung cancer’:ab,ti OR ‘lung 

cancers’:ab,ti OR ‘lung carcinoma’:ab,ti OR ‘lung carcinomas’:ab,ti OR 

‘pulmonary cancer’:ab,ti OR ‘pulmonary cancers’:ab,ti OR ‘cancer of the 

lung’:ab,ti OR ‘cancer of lung’:ab,ti OR ‘adenocarcinoma of lung’:ab,ti OR 

‘lung adenocarcinomas’:ab,ti OR ‘lung adenocarcinoma’:ab,ti OR ‘small cell 

cancer of the lung’:ab,ti OR ‘oat cell carcinoma of lung’:ab,ti OR ‘lung 

tumor’:ab,ti OR ‘pulmonary tumour’:ab,ti OR ‘pulmonary tumor’:ab,ti OR 

‘broncho-pulmonary neoplasm’:ab,ti OR ‘broncho-pulmonary tumor’:ab,ti OR 

‘bronchopulmonary neoplasia’:ab,ti OR ‘bronchopulmonary neoplasm’:ab,ti OR 

‘bronchopulmonary tumor’:ab,ti OR ‘lung neoplasia’:ab,ti OR ‘lung 

tumour’:ab,ti OR ‘pulmonary neoplasia’:ab,ti OR ‘broncho-pulmonary 

cancer’:ab,ti OR ‘bronchopulmonary cancer’:ab,ti OR nsclc:ab,ti 

379080 

#3 #1 OR #2 605675 

#4 ‘radiomics’/exp 9517 

#5 
radiomics:ab,ti OR radiomic:ab,ti OR radiogenomic:ab,ti OR ‘radiomics 

based’:ab,ti OR texture:ab,ti 
57004 

#6 #4 OR #5 57897 

#7 #3 AND #6 3175 

 

4) Web of science 

Search number Query Results 

#1 

Lung Neoplasms (subject) OR Pulmonary Neoplasms (subject) OR Lung 

Neoplasm (subject) OR Pulmonary Neoplasm (subject) OR Lung Cancer 

(subject) OR Lung Cancers (subject) OR Pulmonary Cancer (subject) OR Lung 

Carcinoma (subject) OR Lung Carcinomas (subject) OR Pulmonary Cancer 

(subject) OR Pulmonary Cancers (subject) OR Cancer of the Lung (subject) OR 

Cancer of Lung (subject) OR Adenocarcinoma of Lung (subject) OR Lung 

Adenocarcinomas (subject) OR Lung Adenocarcinoma (subject) OR Small Cell 

Cancer Of The Lung (subject) OR Oat Cell Carcinoma of Lung (subject) OR 

lung tumor (subject) OR pulmonary tumour (subject) OR pulmonary tumor 

(subject) OR broncho-pulmonary neoplasm (subject) OR broncho-pulmonary 

tumor (subject) OR bronchopulmonary neoplasia (subject) OR 

bronchopulmonary neoplasm (subject) OR bronchopulmonary tumor (subject) 

OR lung neoplasia (subject) OR lung tumour (subject) OR pulmonary neoplasia 

(subject) OR broncho-pulmonary cancer (subject) OR bronchopulmonary cancer 

(subject) OR NSCLC (subject) 

553697 

#2 
Radiomics (subject) OR radiomic (subject) OR radiogenomic (subject) OR 

radiomics-based (subject) OR Texture (subject) 
308059 

#3 #1 AND #2 3385 

 

Table S2. 

Number of cases of all 

outcome events 

Total 

number 

Number of 

cases in the 

How to generate 

validation set 

Number of 

cases in the 

Model type 
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of cases training set validation set 

42 137 95 
Random 

sampling7:3 
42 LR 

Adenocarcinoma: 21, 

Squamous cell 

carcinoma:19 

40 28 
Random 

sampling7:3 
12 Naı¨ve Bayes 

 402 224 
External 

validation 
87 51 

LR,SVM,AdaBo,R

F,MLP,GB,as well 

asEn5(exceptGB) 

Adenocarcinoma:51, 

Squamous cell 

carcinoma:147, Large 

cell carcinoma:111 

309 247 
Random 

sampling 
62 

RF, XGB, SVM, 

LR 

Adenocarcinoma:86, 

Squamous cell 

carcinoma:85 

171 171 
10-fold cross 

validation 

 SVM 

Adenocarcinoma:251, 

Squamous cell 

carcinoma:61, Small 

cell carcinoma:38, 

Large cell carcinoma:4 

355 324  201 
SVM,SMOTEfunct

ion 

Adenocarcinoma:47, 

Squamous cell 

carcinoma:40 

87  Leave-one-out 

cross validation 

 SVM 

Adenocarcinoma:240, 

Squamous cell 

carcinoma:110, Large 

cell carcinoma:108, 

others:59 

317 317 
10-fold cross 

validation 

 SVM 

Adenocarcinoma:58, 

Squamous cell 

carcinoma:47 

105 73 
Random 

sampling 
32 

QDA, SVM with 

RBF kernel, SVM 

with sigmoid/tanh 

kernel, RF, and 

XGBoost 

Adenocarcinoma:48, 

Squamous cell 

carcinoma:54 

102 51 
Five random 

samplings 
51 

CNN, 

LSTM+CNN, 

LSTM + CNN + 

SVM, LSTM + 

CNN + kNN 

245 769 537 
Random 

sampling 
232 LR, DT, SVM, AB 

Adenocarcinoma:324, 

Squamous cell 

carcinoma:110 

434 434 
10-fold cross 

validation 

 RBF-SVM,RF,KN

N,RUSBoost 

Adenocarcinoma:46, 71 48 Random 23 MR-Rad,CT-Rad,C
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Squamous cell 

carcinoma:25 

Sampling T-Rad+MR-Rad 

Adenocarcinoma:378, 

Squamous cell 

carcinoma:267 

645 645 
5-fold cross 

validation 

 LR, SVM, RF 

86 153 75 

Random 

sampling, 

external 

verification by 

institutions 

78 LR 

 1142 1002 
Random 

sampling 
140 

LR,SVM,KNN,ML

P,RF,XGBoost 

Adenocarcinoma:705, 

Squamous cell 

carcinoma:583 

1288 980 
External 

validation 
308 

Bagging,AdaBoost,

RF,XGBoost,GBD

T,MLP,LR,GNB,S

VM,KNN 

Squamous cell 

carcinoma:152, Large 

cell carcinoma:106, 

Adenocarcinoma:150, 

uncategorized:58 

466 373 
Random 

sampling8:2 
93 

DA,KNN,SVM,NB

,ensemble 

Squamous cell 

carcinoma:121, Large 

cell carcinoma:101, 

Adenocarcinoma:71, 

uncategorized:56 

349 349 
10-fold cross 

validation 

 SLS 

Adenocarcinoma:72, 

Squamous cell 

carcinoma:54 

126 94 
Random 

sampling 
32 

RF,LR,LR-L1,LR-

PAC,CapsNet,CNN 

80 211 117 

Random 

sampling7:3, 

external 

validation 

94 LR 

Small Cell Lung 

Cancer:55, 

Adenocarcinoma:90, 

Squamous cell 

carcinoma:84 

229 229 
10-fold cross 

validation 

 Naïve Bayes, LR, 

RF 

Adenocarcinoma: 55, 

Squamous cell 

carcinoma:66, Small 

Cell Lung Cancer:79 

200 200 
10-fold cross 

validation 

 SVM, LR, KNN, 

LDA, FNN 

Squamous cell 

carcinoma: 134, Large 

cell carcinoma:110, 

354    MRAS,Boruta 
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uncategorized: 62, 

Adenocarcinoma:48 

Adenocarcinoma:41, 

Squamous cell 

carcinoma:29 

70 48 
Random 

sampling7:3 
22 LR 

Adenocarcinoma:554, 

Squamous cell 

carcinoma:175, Small 

Cell Lung Cancer:191 

920 644 
Random 

sampling7:4 
276 ProNet,com_radNet 

117 245 245 
10-fold cross 

validation 

 L2-LOG,LDA,CAR

T,KNN,SVM,RF 

107 282 197 
Random 

sampling 7:3 
85  LR 

86 206 145 
Random 

sampling7:3 
61 LR 

Adenocarcinoma: 87, 

Squamous cell 

carcinoma: 42 

129 90 
Random 

sampling7:3 
39 LR 

Adenocarcinoma:90, 

Squamous cell 

carcinoma:142, 

Adenosquamous 

carcinoma:81 

313 246 
External 

validation 
67 

GNB,RF,LR,SVM,

GBM,XGBoost 

52 132 87 
External 

validation 
45 RF 

Adenocarcinoma:88, 

Squamous cell 

carcinoma:93, Small 

Cell Lung Cancer:97 

278 278 
3-fold cross 

validation 

 IFS, SVM 
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Figure S1-3. Sensitivity and specificity of radiomics and ML to identify Ki-67 expression in test sets 
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Figure S4-6. Sensitivity and specificity of radiomics and ML for identifying Ki-67 expression in validation sets 
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Figure S7. Funnel plot of meta-analysis covering imaging histology and ML to identify Ki-67 levels in the test 

sets 

 

Figure S8. Funnel plot of meta-analysis covering imaging histology and ML to identify Ki-67 levels in the 

validation sets 
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Figure S9. Sensitivity and specificity of radiomics in identifying different histological subtypes in the test sets 

 

Figure S10. Sensitivity and specificity of radiomics in identifying different histological subtypes in the 

validation sets 
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Figure S11. Funnel plot of meta-analysis of histological subtypes identified by radiomics in the test sets 

 

Figure S12. Funnel plot of meta-analysis of histological subtypes identified by radiomics in the validation sets 
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