
 

 

 
 

 

Paradigm Academic Press 
Journal of Innovations in Medical Research 

ISSN 2788-7022 

SEP. 2023 VOL.2, NO.9 
 

 

 

41 

Predicting Autism Spectrum Disorder Using Pluripotent Stem Cell 

RNA-Seq Data and Machine Learning 

 

 

Richard Li1 

1 Highland Park High School, TX 75205, USA 

Correspondence: Richard Li, Highland Park High School, TX 75205, USA. 

 

doi:10.56397/JIMR/2023.09.07 

 

 

Abstract 

In this work, datasets of gene expression in Autism Spectrum Disorder (ASD) were analyzed with the goal of 

selecting the most attributed genes and performing classification with machine learning algorithms. The publicly 

published datasets (GSE129806 and GSE214323) from the Gene Expression Omnibus database, which are both 

RNA-seq gene count data of humans, were downloaded. Then the workflows with differential expression analysis, 

principal component analysis (PCA), gene set enrichment analysis (GSEA) (Subramanian et al., 2005) and gene 

expression Meta-Analysis (Toro-Domínguez et al., 2020) were developed. The datasets were following pipelines 

which used machine learning algorithms to develop prediction models for classification. The results of this 

exploratory study suggest that the gene expression profiles identified from the pluripotent stem cell samples with 

ASD can be used to identify a biological signature for ASD with machine learning techniques. And especially, the 

gene expression Meta-Analysis of multiple datasets and larger numbers of samples could lead to more practical 

tools, such as Machine Learning models and workflows, to detect ASD at an early age in the general population.  

Keywords: Autism Spectrum Disorder (ASD), machine learning algorithms, workflows, tools 

1. Introduction 

According to WHO (World Health Organization), ASD, also referred to as Autism Spectrum Disorder, constitutes 

a diverse group of conditions related to development of the brain (World Health Organization: WHO, 2023). 

Autism is characterized by some degree of difficulty with social interaction and communication (WHO, 2023). 

Other characteristics are atypical patterns of activities and behaviors, such as difficulty with transition from one 

activity to another, a focus on details, and unusual reactions to sensations. According to CDC (Centers for Disease 

Control & Prevention), about 1 in 36 children has been identified with autism spectrum disorder (ASD) according 

to estimates from CDC’s Autism and Developmental Disabilities Monitoring (ADDM) Network (Basics About 

Autism Spectrum Disorder (ASD) | NCBDDD | CDC, 2022). About 1 in 6 (17%) children aged 3–17 years were 

diagnosed with a developmental disability, as reported by parents, during a study period of 2009-2017. These 

included autism, attention-deficit/hyperactivity disorder, blindness, and cerebral palsy, among others (Data and 

Statistics on Autism Spectrum Disorder | CDC, 2023). Identifying autism is difficult before the age of about 12 

months but diagnosis is generally possible by the age of 2 years (WHO Autism Q&A). Diagnosing ASD can be 

difficult since there is no medical test, like a blood test, to diagnose the disorder. Doctors look at the child’s 

behavior and development to make a diagnosis. By age 2, a diagnosis by an experienced professional can be 

considered reliable. However, many children do not receive a final diagnosis until they are much older (Basics 

About Autism Spectrum Disorder (ASD) | NCBDDD | CDC, 2022). Some people are not diagnosed until they are 

adolescents or adults. This delay means that people with ASD might not get the early help they need.  

So, early diagnosis of ASD can lead to increased benefits in therapy, personalized treatment, social 

accommodations and communication. Different types of biomarkers including prenatal history, genetics, 

neurological, metabolic and nutritional were used for diagnosis (Jensen et al., 2022). While its etiology is complex, 
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ASD has a strong genetic basis (Hallmayer et al., 2011; Jeste & Geschwind, 2014; Colvert et al., 2015). So far 

there are many different genetic data that have been collected for ASD to be analyzed and used for the purpose of 

diagnosis. This study aims to find methods to speed and simplify diagnosis. As already been applied in various 

fields, including image and speech recognition, natural language processing, recommendation systems etc. 

Machine Learning techniques benefit our lives on a daily basis. Machine Learning is a subset of artificial 

intelligence (AI) that focuses on developing algorithms and models that allow computers to learn and make 

predictions or decisions based on data through statistical analysis. It has immense potential to enhance diagnostic 

and intervention research in the behavioral sciences (Bone et al., 2014), and may be especially useful in 

investigations involving the highly prevalent and heterogeneous syndrome of ASD. This study used its 

methodologies and tools aiming to build models to apply a transcriptomic approach using RNA-seq datasets to 

identify a gene expression signature with promising performances in the diagnostic prediction of ASD. 

There are a few challenges in the gene expression analysis of ASD. The first challenge is that there is lots of noise 

in gene expression level data (Parab et al., 2022), which in general usually occurs due to variations associated with 

the experiments or the existence of alterations in the genes (Ansel et al., 2017). In the case of autism, the extra 

variance may be linked to the presence of alterations in many genes. Another challenge is the difficulty in selection 

and identification of the genes that are most relevant to autism (Selection of Gene) (Rahman et al., 2020). This 

problem exists because the gene expression levels in ASD show considerable diversity among individuals and 

because the sequences of several of these genes are highly variable. Another challenge is the limited number of 

samples (in the range of dozens or hundreds) that have been made in comparison to the very large number of genes 

(in the range of tens of thousands). In machine learning, this term is known as “high dimensionality”, and 

sophisticated methods are required to handle it properly. 

2. Methods 

2.1 Data Source 

The publicly available datasets (GSE129806 and GSE214323) were downloaded from the Gene Expression 

Omnibus database (GEO DataSets — NCBI, n.d.). The two datasets were chosen for this study because they are 

relatively recent data generated in 2020 and 2023 respectively; and both of them use expression profiling by high 

throughput sequencing equipments of Illumina HiSeq 3000 and Illumina NovaSeq 6000 respectively; at the same 

time both of them were generated from stem cells of humans. In addition, they contain relative higher number of 

samples, which is crucial for machine learning training, compared to several other RNA-seq datasets from Gene 

Expression Omnibus, e.g., GSE105046 only contains 6 samples, GSE125020 has 15 samples while GSE221923 

contains 18 samples. 

GSE129806, claimed by the authors that it was the first attempt to model multiplex autism using patient-derived 

induced pluripotent stem cells (iPSCs), aiming on providing evidence of morphological, physiological, and 

transcriptomic signatures of polygenic liability to ASD. The dataset is RNA-sequencing of humans induced 

pluripotent stem cell-derived cortical inhibitory and excitatory neural progenitors for four cell lines from four 

different individuals with varying autism affectation; four biological replicates per cell line. It analyzes cellular 

and molecular characterization of multiplex autism in humans induced pluripotent stem cell-derived neurons. The 

samples totally contain ASDs (n=16) and Controls (n=16). 

GSE214323. Alterations in cortical neurogenesis are implicated in neurodevelopmental disorders including 

Autism Spectrum Disorders. The study aims to provide experimental evidence for the understudied cortical 

neurogenesis in addition to ASD risk genes. The dataset is RNA-sequencing of humans using isogenic induced 

pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) and cortical organoid models. It reports that a 

heterozygous PTEN p.I135L mutation found in an ASD patient with macrocephaly dysregulates cortical 

neurogenesis in an ASD genetic background-dependent fashion. Libraries for each genotype include three 

independent cell culture replicates and three separate passages. The samples totally contain ASDs (n=36) and 

Controls (n=18). 

2.2 Workflows 

In this study two workflows were developed: Single Dataset vs Multi-Dataset with Meta-Analysis as illustrated in 

Supplementary Figure S1. The processing blocks in light yellow were manually performed while the processing 

blocks in lime and light red were programmatically performed. 
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Figure S1. 

 

Each of the workflow shares the similar steps in their processing pipeline. First, the RNA-seq gene count and 

metadata files were prepared manually from original GSE datasets in the “Prepare date files” step. Second, the 

preprocessing module of “scikit-learn” was used to scale per gene cross samples programmatically in the 

“Preprocessing data” step. The “Feature (Gene) Selection” step aimed to handle the “high dimensionality” 

challenge. There are two approaches were taken: using “scikit-learn” programs in Python and using GSEA (Gene 

Set Enrichment Analysis) in the “Single Dataset” workflow; and using gene expression Meta-Analysis to obtain 

the top genes in the “Multi-Dataset with Meta-Analysis” workflow. With the selected features (genes) from the 

“Feature Selection” step, the “Hierarchical Clustering” analysis and visualization of all samples in each dataset 

were performed using the heatmap function in the “bioinfokit” package in Python (Reneshbedre, n.d.). For 

“Classification”, the programs in Python utilizing the classifiers in “scikit-learn” were used to train the datasets 

for development of prediction models. The classifiers include K-Nearest Neighbors, Stochastic Gradient Descent, 

AdaBoost and Quadratic Discriminant Analysis. Each dataset was randomly divided into 70% training data and 

30% test data for 20 runs. In each run, different classifiers/algorithms were trained and results were evaluated. 

2.3 Single Dataset Workflow 

The Single Dataset Workflow is illustrated in Supplementary Figure S1. In this workflow, a single dataset was 

used (GSE129806 and GSE214323 were independent of one another). There were two methods used for 

feature/gene selection: “scikit-learn” programs in Python vs GSEA (Gene Set Enrichment Analysis). 

The approach of “scikit-learn” programs preprocesses data by normalizing the data to a unit norm. The 

preprocessed data was followed by FDR (False discovery rate) correction to ensure only statistically-significant 

(p < 0.05) genes/features remain. Then, the dimension reduction with PCA (Principal component analysis) was 

applied to determine how many genes (features) would be needed for the downstream processing of Hierarchical 

Clustering and Classification. PCA was performed using the “Incremental PCA” class (Sklearn. Decomposition. 

Incremental PCA, n.d.) of the “scikit-learn” package. Its linear dimensionality reduction uses Singular Value 

Decomposition (SVD) of the data, keeping only the most significant singular vectors to project the data to a lower 

dimensional space. And the PCA two-dimension visualization was plotted using the “Seaborn” (Seaborn: 

Statistical Data Visualization, n.d.) packages in Python. To finally select the top genes/features from the PCA, 

ANOVA (Analysis of variance) which uses the F-test was executed. All the steps were programmed and done 

utilizing the pipeline feature of “scikit-learn”.  

For the approach of GSEA (Gene Set Enrichment Analysis), which is a computational method that determines 

whether an a priori defined set of genes shows statistically significant, concordant differences between two 

biological states (e.g., phenotypes). GSEA reveals many biological pathways in common. In this study specifically, 

GSEA was used to obtain the gene markers ranked by the enrichment scores. GSEA is available for download at 

https://www.gsea-msigdb.org/ (GSEA, n.d.). Both GSE datasets (GSE129806 and GSE214323) were processed 
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against “GSEA C2-KEGG” Gene Sets (GSEA | MSIGDB | Browse Human Gene Sets, n.d.) manually GSEA and 

the top 100 genes/features were obtained based on enrichment scores with a 0.05 statistical significance threshold.  

These selected top genes/features were then fed to the downstream processing steps of Hierarchical Clustering and 

Classification. A Hierarchical Clustering analysis and visualization was performed programmatically using the 

heatmap function in the “bioinfokit” package in Python and the end result was evaluated. In the Classification, the 

“scikit-learn” programs utilizing the classifiers, K-Nearest Neighbors, Stochastic Gradient Descent, AdaBoost and 

Quadratic Discriminant Analysis, were used to train the dataset and the development of a prediction model. Each 

dataset was randomly divided into 70% training data and 30% test data for 20 runs, then different 

classifiers/algorithms were trained and results were evaluated. 

2.4 Multi-Dataset with Meta-Analysis Workflow 

The Multi-Dataset Workflow is illustrated in Supplementary Figure S1. In this workflow, the two datasets of 

GSE129806 and GSE214323 were processed manually through gene expression Meta-Analysis for Feature (gene) 

Selection, and the top 100 genes (features) were obtained with a 0.05 statistical significance then fed to the 

downstream processing steps of Hierarchical Clustering and Classification. In this study, two methods were used 

when performing gene expression meta-analysis. The first method is based on combining P values with the 

“Fisher’s method” (Yoon et al., 2021). The second method is combining fixed effect size, which is a linear model 

that considers that the different studies share a common effect size called true effect. The Supplementary Table 

S12 shows the detailed formulas for each of them. A major tool utilized in this study is “NetworkAnalyst” 

(NetworkAnalyst, n.d.). 

The Hierarchical Clustering and Classification were conducted using the same procedures as the “Single Dataset” 

workflow. In addition, in this workflow the dataset GSE129806, which shares the same features/genes with 

GSE214323 from Feature Selection, was first trained using the different classifiers/algorithms. The trained model 

was then saved into a file using the “Joblib” package (Joblib: Running Python Functions as Pipeline Jobs, n.d.) 

and later loaded back into the program to predict the samples in dataset GSE214323 which were previously unseen 

by the model. Finally, the results of the models’ predictions were recorded. 

3. Results 

3.1 Pathways and Biomarkers 

in “Feature (Gene) Selection” step, there were three different approaches were taken: “scikit-learn” programs 

including feature selection and dimension deduction (written in Python), using GSEA (Gene Set Enrichment 

Analysis) to figure out the top genes; and using gene expression Meta-Analysis to obtain the top genes. All the 

selected genes with each method satisfied the statistical significance threshold of 0.05.  

There are genes selected from the datasets in this study that were also previously identified in the pathways of 

KEGG Autism - KEGG DISEASE (KEGG DISEASE: Autism, n.d.) As shown in the Supplementary Table S1, 

HLA-C, SLITRK2, NRXN1, CADM3 and CNTN1 are part of the “Cell adhesion molecules” pathway; And GRIK2, 

GRIA2, GRIA4, PRKCB, PRKCG and GRM8 are part of the “Glutamatergic synapse” pathway. The selected PRR5 

is part of the “mTOR signaling” pathway. Meanwhile PRKCB, PRKCG, FZD8 and FZD6 are part of both “Wnt 

signaling” and “mTOR signaling” pathways. This overlap affirmed that the biomarkers are informative for 

detecting ASD. 

 

Table S1. KEGG ASD suspected genes overlapping with selected genes in this study 

Gene 

Symbol 

Gene  

Name 

KEGG ASD 

Pathway(s) 

Dataset 

w/ Feature Selection 

HLA-C 
major histocompatibility 

complex, class I, C 
Cell adhesion molecules (hsa04514) GSE129806 - GSEA 

SLITRK2 
SLIT and NTRK like family 

member 2 
Cell adhesion molecules (hsa04514) 

Meta-Analysis w/ 

Combining Effect Sizes 

NRXN1 neurexin 1 Cell adhesion molecules (hsa04514) GSE214323 - scikit-learn 

CADM3 cell adhesion molecule 3 Cell adhesion molecules (hsa04514) 
Meta-Analysis w/ 

Combining P-Values 

CNTN1 contactin 1 
Cell adhesion molecules     

(hsa04514) 

Meta-Analysis w/ 

Combining Effect Sizes 
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GRIK2 
glutamate ionotropic receptor 

kainate type subunit 2 
Glutamatergic synapse (hsa04724) 

Meta-Analysis w/ 

Combining Effect Sizes 

GRIA2 
glutamate ionotropic receptor 

AMPA type subunit 2 
Glutamatergic synapse (hsa04724) 

GSE214323 - GSEA 

Meta-Analysis w/ 

Combining Effect Sizes 

GRIA4 
glutamate ionotropic receptor 

AMPA type subunit 4 
Glutamatergic synapse (hsa04724) 

Meta-Analysis w/ 

Combining Effect Sizes 

PRKCB protein kinase C beta 

Glutamatergic synapse (hsa04724) 

Wnt signaling (hsa04310) 

mTOR signaling (hsa04150) 

GSE214323 - GSEA 

PRKCG protein kinase C gamma 

Glutamatergic synapse (hsa04724) 

Wnt signaling (hsa04310) 

mTOR signaling (hsa04150) 

GSE214323 - GSEA 

GRM8 
glutamate metabotropic 

receptor 8 
Glutamatergic synapse (hsa04724) 

GSE214323 - GSEA 

Meta-Analysis w/ 

Combining Effect Sizes 

Meta-Analysis w/ 

Combining P-Values 

FZD8 frizzled class receptor 8 
Wnt signaling  (hsa04310) 

mTOR signaling (hsa04150) 

GSE214323 - scikit-learn 

Meta-Analysis w/ 

Combining P-Values 

FZD6 frizzled class receptor 6 
Wnt signaling  (hsa04310) 

mTOR signaling (hsa04150) 
GSE214323 - GSEA 

PRR5 proline rich 5 mTOR signaling (hsa04150) 

GSE214323 - scikit-learn 

Meta-Analysis w/ 

Combining P-Values 

 

3.2 Single Dataset Workflow 

3.2.1 Primary Component Analysis 

As shown in Supplementary Figure S2, for the dataset of GSE129806, it would need 27 components to reach 

100% of cumulative explained variances. And Supplementary Figure S3 shows for two-dimension PCA, 

component 1 stands for 76.74% of explained variances and component 2 stands for 4.48% of explained variances. 

For the dataset of GSE214323, it would need 49 components to reach 100% of cumulative explained variances as 

shown in Supplementary Figure S4. And Supplementary Figure S5 shows two-dimension PCA component 1 

stands for 69.75% of explained variances and component 2 stands for 6.01% of explained variances. 

3.2.2 Hierarchical Clustering 

Using dataset GSE129806 the Hierarchical Clustering with “scikit-learn” programs and GSEA (Gene Set 

Enrichment Analysis) both showed that 16 ASDs and 16 Controls were correctly clustered, suggesting that these 

selected features could be helpful for differentiating between ASDs and Controls. The detailed results are presented 

in the Supplementary Figure S6 and Supplementary Figure S7. 

Using the dataset GSE214323 the Hierarchical Clustering with “scikit-learn” programs and GSEA (Gene Set 

Enrichment Analysis) both showed that 36 ASDs and 18 Controls were correctly clustered, suggesting that these 

selected features could be helpful for differentiating between ASDs and Controls. The detailed results are presented 

in the Supplementary Figure S8 and Supplementary Figure S9. 
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Figure S8. Scikit-learn hierarchical clustering 

 

 
Figure S9. GSEA hierarchical clustering 

 

3.2.3 Classification 

As shown in Supplementary Table S2 and Table S3, for the dataset of GSE129806, classifiers of “K-Nearest 

Neighbors” and “Stochastic Gradient Descent” showed 100% accuracy during the process using both scikit-learn 

and GSEA feature selection. And the classifier of “AdaBoost” showed 96.50% and 96.00% accuracy for scikit-

learn and GSEA feature selection respectively. Meanwhile the classifier of “Quadratic Discriminant Analysis” 

showed lower 78.00% accuracy for scikit-learn feature selection and 73.50% accuracy for GSEA feature selection. 

For the dataset of GSE214323, as shown in Supplementary Table S4 and Table S5, the classifier of “K-Nearest 

Neighbors” showed 97.35% and 100.00% accuracy for scikit-learn and GSEA feature selection respectively. The 

classifier of “Stochastic Gradient Descent” showed 97.06% accuracy using scikit-learn and 99.12% accuracy using 
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GSEA feature selection. And the classifier of “AdaBoost” showed accuracy of 91.47% and 92.94% for scikit-learn 

and GSEA feature selection respectively. Meanwhile the classifier of “Quadratic Discriminant Analysis” showed 

lower 70.88% accuracy for scikit-learn feature selection and 75.29% accuracy for GSEA feature selection. The 

prediction models distinguished between the individuals with ASDs and Controls yielding promising results with 

relatively lower accuracy for the “Quadratic Discriminant Analysis” classifier. 

3.3 Multi-Dataset with Meta-Analysis Workflow 

3.3.1 Hierarchical Clustering 

As shown in the figures Supplementary Figure S12 and Figure S13, 36 ASDs and 18 Controls were entirely 

correctly clustered for GSE214323 for both meta-analysis methods of combining P-values and combining fixed 

effect sizes. 

The Hierarchical Clustering using the dataset GSE214323 was relatively well discriminated from the dataset 

GSE129806. As shown in the figures Supplementary Figure S10 and Figure S11 the clustering was not entirely 

correct for GSE129806. For meta-analysis with combining P-values method, 8 out of 16 ASDs and 8 out of 16 

Controls were correctly clustered, while for meta-analysis with combining fixed effect sizes method, 8 out of 16 

ASDs and 9 out of 16 Controls were correctly clustered. Overall, Hierarchical Clustering results suggest these 

selected features could be helpful for differentiating between ASDs and Controls. 

3.3.2 Classification 

As shown in Supplementary Table S6 and Supplementary Table S7, for the dataset of GSE129806 with meta-

analysis using combining P-values method the classifier “Stochastic Gradient Descent” gave the highest accuracy 

of 98.50% while the classifier of “AdaBoost” showed the highest accuracy of 99.50% with meta-analysis using 

combining fixed effective size method. The classifier of “K-Nearest Neighbors” showed accuracy of 82.00% and 

89.50% with meta-analysis using combining P-values and combining fixed effective size methods respectively. 

And the classifier of “Quadratic Discriminant Analysis”, similar to the performance in “Single Dataset” workflow, 

showed the lowest accuracy: 77.00% for meta-analysis using combining P-values and 70.00% for meta-analysis 

using combining fixed effective size. 

For the dataset of GSE214323, as shown in Supplementary Table S8 and Supplementary Table S9, the classifier 

of “K-Nearest Neighbors” gave 100% accuracy for both meta-analysis methods of combining P-values and 

combining fixed effect sizes. “Stochastic Gradient Descent” also showed high accuracy of 98.53% and 99.12% 

for the two meta-analysis methods respectively. The third best performing classifier of “AdaBoost” showed 

accuracy of 94.41% and 98.24% respectively for the two meta-analysis methods. And the classifier of “Quadratic 

Discriminant Analysis” gave relatively poorer performance for 72.94% accuracy using the meta-analysis method 

of combining P-values and 73.24% accuracy using the method of combining fixed effect sizes. 

In this “Multi-Dataset with Meta-Analysis” workflow, dataset GSE129806, which shares the same features (genes) 

with GSE214323 from Feature Selection, was first trained using the different classifiers/ algorithms already 

mentioned. The trained models were saved into files (e.g., “GSE129806_MA-CombinePV_Stochastic Gradient 

Descent.joblib”) using the “Joblib” package. Then, at a later time, the saved model files were loaded back into the 

program and used to train the dataset GSE214323, for which the model had never seen before. GSE214323 was 

then randomly divided into 70% training data and 30% test data, and the loaded trained models used the test data 

to validate the prediction of ASDs vs Controls. This validation revealed that the prediction models, with the unseen 

test data, distinguished between the individuals with ASDs and Controls with relatively accurate results for 

classifiers such as “K-Nearest Neighbors” (85.88% accuracy) and “Stochastic Gradient Descent” (83.82% 

accuracy), which is shown in Supplementary Table S10. 

 

Table S10. Classification w/ combining P-values trained models after 20 run(s) for GSE214323 

Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

K-Nearest Neighbors 85.88 100.00 78.52 87.68 

Stochastic Gradient Descent 83.82 100.00 75.34 85.51 

AdaBoost 61.18 75.90 59.85 65.77 

Quadratic Discriminant 

Analysis 

56.47 67.63 60.86 63.22 
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Notably, when the meta-analysis was performed using the “combining fixed effect sizes” method, the prediction 

results were better for every single classifier compared to using the “combining P-values” method, which is shown 

in Supplementary Table S11. For example, the accuracy of the “Stochastic Gradient Descent” classifier had 

increased from 83.82% to 90.59% when using the combined fixed effect sizes method. This behavior was expected 

for the method, which usually gives more conservative results (less DE/differential expressed features but more 

confident). 

4. Discussion 

Many people with ASD require life-long care and support. Even if some of them can live independently, they will 

face disadvantages for their education and employment opportunities. In addition, the demands on families 

providing care and support can be significant. Considering the prevalence of ASD in the United States and around 

the globe (Maenner et al., 2023), it is actually a pressing requirement for the academic research community, 

healthcare and technology industries to come up with solutions to help those individuals and families. To be able 

to detect the potential ASD development at the earlier age of people, like newborns or young children, would play 

a key role to apply appropriate treatments. Some people are not diagnosed until they are adolescents or adults. This 

delay means that people with ASD might not get the early help they need (Screening and Diagnosis | Autism 

Spectrum Disorder (ASD) | NCBDDD, 2022). Utilizing machine learning techniques to analyze available data 

could have the potential to speed and simplify diagnosis (Kassraian-Fard et al., 2016). According to CDC, there 

are many different factors that have been identified that may make a child more likely to have ASD, notably among 

the factors that may put children at greater risk for developing ASD (Basics About Autism Spectrum Disorder 

(ASD) | NCBDDD | CDC, 2022), several are genetic related such as: 

● Having a sibling with ASD 

● Having certain genetic or chromosomal conditions, such as fragile X syndrome or tuberous sclerosis 

Using genetic data would be more effective for the purpose of detecting ASD as early as possible, compared to 

some other efforts using data like “set of behaviors” (Kosmicki et al., 2015), when the data is made available at 

much later time for people developing ASD. In this study, different approaches for Feature Selection were used: 

Python programs using “scikit-learn”, using GSEA manually, and running gene expression Meta-Analysis 

manually. A result of importance is that the obtained genes of significance list overlapped with previously reported 

candidate genes and pathway associations for ASD from the KEGG Autism - KEGG DISEASE (KEGG DISEASE: 

Autism, n.d.) database, confirming that the machine learning prediction models could be effective at determining 

biomarkers.  

The machine learning classification results in the study were consistent with the findings of previous studies that 

reported on gene expression signatures with a high diagnostic accuracy for ASD (Pramparo et al., 2015; Hu & Lai, 

2013). The classifiers used in this study, which are “K-Nearest Neighbors”, “Stochastic Gradient Descent”, 

“AdaBoost” and “Quadratic Discriminant Analysis”, had different performances in different workflows. Overall 

“Quadratic Discriminant Analysis” yielded the lowest prediction accuracy scores. While other three classifiers 

resulted in promising results of accuracy and other metrics. Utilizing multiple classifiers enabled the cross 

reference for the same sample(s) to yield higher confidence for the prediction results. One of the study’s goals was 

to develop a more generic, widespread application of machine learning and use them to perform prediction on 

unseen samples in the biogenetic field. Instead of only focusing on a single dataset for machine learning prediction 

like other studies (Oh et al., 2017; Lin et al., 2021), this exploratory study used meta-analysis methodologies and 

tools to create “common” feature/gene sets for multiple datasets. With the “common” feature/gene sets, data from 

one dataset was trained by machine learning algorithms then the trained models were used to perform prediction 

on unseen dataset. This approach revealed the encouraging results that gene expression meta-analysis with 

machine learning may offer the stepping-stones to achieve the original goal eventually. 

There are some limitations that come with this study. First, given that our study applied analysis on archival pre-

existing datasets, which are pluripotent stem cell RNA-seq data. Further validation of the effectiveness for the 

developed workflows might be needed for different cell types, such as brain cells and blood cells. Second, the 

datasets have limited sample sizes, which are common in gene expression level data. From a machine learning 

point of view, many more samples would definitely be helpful for building more general and accurate prediction 

models. Third, the meta-analysis tools used in this study do not support some of the formulas for combining P-

values, including Pearson’s method, Tippet’s method (minimum of P values) and Wilkinson’s method (maximum 

of P values) (Toro-Domínguez et al., 2020). So, the more comprehensive prediction performance comparison could 

not be done with the different selected genes/features. Due to the limitations mentioned above the results of this 

study should be cautiously interpreted.  

5. Conclusions 
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In conclusion, this study suggests that machine learning techniques can be used to analyze RNA-seq genetic data 

and use it to distinguish between ASD and control samples with promising accuracy. If further analysis is 

performed on more datasets and validated in a larger cohort of cases and controls, the more general the workflows 

and machine learning models would be, which would increase the accuracy and expedite future diagnoses of ASD. 

Subsequently, individualized treatment options for patients could be made earlier which would have a significant 

positive impact on both the patients and their families. 
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Figure S2. Number of Components needed vs Cumulative Explained Variance for dataset of GSE129806 

 

 

Figure S3. Two-component PCA plot showing ASD vs CTRL samples for dataset of GSE129806 

 

 

Figure S4. Number of Components needed vs Cumulative Explained Variance for dataset of GSE214323 
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Figure S5. Two-component PCA plot showing ASD vs CTRL samples for dataset of GSE214323 

 

 

Figure S6. Scikit-learn hierarchical clustering heatmap for dataset of GSE129806 
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Figure S7. GSEA hierarchical clustering heatmap for dataset of GSE129806 
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Figure S8. scikit-learn hierarchical clustering heatmap for dataset of GSE214323 

 

 

Figure S9. GSEA hierarchical clustering heatmap for dataset of GSE214323 
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Figure S10. Meta-Analysis w/ combined P-values hierarchical clustering heatmap for dataset of GSE129806 
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Figure S11. Meta-Analysis w/ combined effect sizes hierarchical clustering heatmap for dataset of GSE129806 
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Figure S12. Meta-Analysis w/ combined P-values hierarchical clustering heatmap for dataset of GSE214323 

 

 

Figure S13. Meta-Analysis w/ combined effect sizes hierarchical clustering heatmap for dataset of GSE214323 
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Tables 

Table S1. KEGG ASD suspected genes overlapping with selected genes in this study 

Gene 

Symbol 

Gene 

Name 

KEGG ASD 

Pathway(s) 

Dataset 

w/ Feature Selection 

HLA-C 
major histocompatibility complex, 

class I, C 

Cell adhesion molecules 

(hsa04514) 
GSE129806 - GSEA 

SLITRK2 
SLIT and NTRK like family 

member 2 

Cell adhesion molecules 

(hsa04514) 

Meta-Analysis w/ 

Combining Effect Sizes 

NRXN1 neurexin 1 
Cell adhesion molecules 

(hsa04514) 
GSE214323 - scikit-learn 

CADM3 cell adhesion molecule 3 
Cell adhesion molecules 

(hsa04514) 

Meta-Analysis w/ 

Combining P-Values 

CNTN1 contactin 1 
Cell adhesion molecules 

(hsa04514) 

Meta-Analysis w/ 

Combining Effect Sizes 

GRIK2 
glutamate ionotropic receptor 

kainate type subunit 2 

Glutamatergic synapse 

(hsa04724) 

Meta-Analysis w/ 

Combining Effect Sizes 

GRIA2 
glutamate ionotropic receptor 

AMPA type subunit 2 

Glutamatergic synapse 

(hsa04724) 

GSE214323 - GSEA 

Meta-Analysis w/ 

Combining Effect Sizes 

GRIA4 
glutamate ionotropic receptor 

AMPA type subunit 4 

Glutamatergic synapse 

(hsa04724) 

Meta-Analysis w/ 

Combining Effect Sizes 

PRKCB protein kinase C beta 

Glutamatergic synapse 

(hsa04724) 

Wnt signaling (hsa04310) 

mTOR signaling 

(hsa04150) 

GSE214323 - GSEA 

PRKCG protein kinase C gamma 

Glutamatergic synapse 

(hsa04724) 

Wnt signaling (hsa04310) 

mTOR signaling 

(hsa04150) 

GSE214323 - GSEA 

GRM8 glutamate metabotropic receptor 8 
Glutamatergic synapse 

(hsa04724) 

GSE214323 - GSEA 

Meta-Analysis w/ 

Combining Effect Sizes 

Meta-Analysis w/ 

Combining P-Values 

FZD8 frizzled class receptor 8 

Wnt signaling (hsa04310) 

mTOR signaling 

(hsa04150) 

GSE214323 - scikit-learn 

Meta-Analysis w/ 

Combining P-Values 

FZD6 frizzled class receptor 6 

Wnt signaling (hsa04310) 

mTOR signaling 

(hsa04150) 

GSE214323 - GSEA 

PRR5 proline rich 5 
mTOR signaling 

(hsa04150) 

GSE214323 - scikit-learn 

Meta-Analysis w/ 

Combining P-Values 
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Table S2. Classification using scikit-learn feature selection after 20 run(s) for GSE129806 

Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

K-Nearest Neighbors 100.00 100.00 100.00 100.00 

Stochastic Gradient Descent 100.00 100.00 100.00 100.00 

AdaBoost 96.50 97.92 95.33 96.49 

Quadratic Discriminant 

Analysis 

78.00 81.99 73.31 73.47 

 

Table S3. Classification using GSEA feature selection after 20 run(s) for GSE129806 

Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

K-Nearest Neighbors 100.00 100.00 100.00 100.00 

Stochastic Gradient Descent 100.00 100.00 100.00 100.00 

AdaBoost 96.00 95.74 97.17 96.21 

Quadratic Discriminant 73.50 72.53 74.82 71.58 

 

Table S4. Classification using scikit-learn feature selection after 20 run(s) for GSE214323 

Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

K-Nearest Neighbors 97.35 99.09 97.50 97.83 

Stochastic Gradient Descent 97.06 99.44 96.29 97.75 

AdaBoost 91.47 96.06 91.62 93.54 

Quadratic Discriminant 

Analysis 

70.88 91.94 66.21 73.17 

 

Table S5. Classification using GSEA feature selection after 20 run(s) for GSE214323 

Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

K-Nearest Neighbors 100.00 100.00 100.00 100.00 

Stochastic Gradient Descent 99.12 100.00 98.67 99.30 

AdaBoost 92.94 94.05 94.90 94.20 

Quadratic Discriminant 

Analysis 

75.29 86.58 78.54 80.42 

 

Table S6. Classification using Meta-Analysis combining P-values after 20 run(s) for GSE129806 

Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Stochastic Gradient Descent 98.50 98.33 97.50 97.57 

AdaBoost 96.50 96.29 97.62 96.65 

K-Nearest Neighbors 82.00 80.29 89.53 83.16 

Quadratic Discriminant 

Analysis 

77.00 79.24 65.05 68.21 
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Table S7. Classification using Meta-Analysis combining effect sizes after 20 run(s) for GSE129806 

Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Stochastic Gradient Descent 96.00 96.62 96.57 96.12 

AdaBoost 99.50 99.17 100.00 99.55 

K-Nearest Neighbors 89.50 86.35 96.74 89.93 

Quadratic Discriminant 

Analysis 

70.00 72.11 64.19 62.70 

 

Table S8. Classification using Meta-Analysis combining P-values after 20 run(s) for GSE214323 

Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

K-Nearest Neighbors 100.00 100.00 100.00 100.00 

Stochastic Gradient Descent 98.53 100.00 97.70 98.77 

AdaBoost 94.41 96.22 94.84 95.40 

Quadratic Discriminant 

Analysis 

72.94 86.42 74.20 76.42 

 

Table S9. Classification using Meta-Analysis combining effect sizes after 20 run(s) for GSE214323 

Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

K-Nearest Neighbors 100.00 100.00 100.00 100.00 

Stochastic Gradient Descent 99.12 100.00 98.83 99.38 

AdaBoost 98.24 100.00 97.34 98.55 

Quadratic Discriminant 

Analysis 

73.24 88.06 72.42 76.51 

 

Table S10. Classification w/ combining P-values trained models after 20 run(s) for GSE214323 

Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

K-Nearest Neighbors 85.88 100.00 78.52 87.68 

Stochastic Gradient Descent 83.82 100.00 75.34 85.51 

AdaBoost 61.18 75.90 59.85 65.77 

Quadratic Discriminant 

Analysis 

56.47 67.63 60.86 63.22 
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Table S11. Classification w/ combining effect sizes trained models after 20 run(s) for GSE214323 

Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

K-Nearest Neighbors 96.18 100.00 94.14 96.91 

Stochastic Gradient Descent 90.59 100.00 86.52 92.67 

AdaBoost 65.00 79.94 61.23 69.01 

Quadratic Discriminant 

Analysis 

62.35 70.31 80.79 74.76 

 

Table S12. Meta-Analysis methods of Combining P-Values vs Combining Fixed Effect Sizes 

Method Formula 

Combining P-Values “Fisher’s method”, uses the sum of the logarithms of the P values, that is to say: 

−2 × ∑𝑘
𝑖=1 = 𝑙𝑛 (𝑝𝑖)” 

where 𝑝𝑖  is each of the P values of the different studies. In this case, the null 

hypothesis is when there is no difference in gene expression between the different 

studies and it is distributed as a χ2 with 2k degrees of freedom (k being the number 

of studies). 

Combining Fixed 

Effect Sizes 

It is a linear model that considers that the different studies share a common effect size 

called true effect. The combined effect, 𝑇., is calculated as: 

𝑇. = 
∑ 𝜔𝑖𝑇𝑖

∑ 𝜔𝑖

 

where 𝜔𝑖 are the different weights assigned to each study, that is, the inverse within-

study variance,  

V (𝑇𝑖): 

𝜔𝑖 = 
1

𝑉 (𝑇𝑖)
 

The variance of the combined effect is defined as: 

V (𝑇. ) = 
1

∑ 𝜔𝑖
 

The combined effect value for a standard normal: 

Z = 
𝑇.

√𝑉 (𝑇.)

 

Therefore, two-tailed P value can be calculated by: 

P = 2 [1 − (Φ( |Z| ))] 

where Φ is the standard normal cumulative distribution function. 

 

Associated Data 

GSE129806 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129806) 

GSE214323 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE214323) 
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