

JOURNAL OF INNOVATIONS IN MEDICAL RESEARCH

ISSN 2788-7022

OCT. 2025 VOL. 4, NO. 5

CONTENTS

Management of Acute and Chronic Hepatitis B and C Viral Infections	1-6
Haradhan Kumar Mohajan	
Research on Miniaturization and Low-Power Technology of Portable Ventilators in Home Medical Scenarios	7-12
Yinglong Jiang	
Design and Practice of Elastic Scaling Mechanism for Medical Cloud-Edge Collaborative Architecture	13-18
Zhengyang Qi	
Research on the Intervention of Cancer Patients' Anxiety by the Concept of "Harmonization of Body and Mind" in Traditional Chinese Medicine	19-25
Dandan Yuan	
Neurodevelopmental Perspectives on the Rising ADHD Diagnoses in China	26-38
Hao Xu	
Epileptogenesis as a Multilevel Process: Cellular, Circuit, and Network Mechanisms	39-62
Javier Santos	

Management of Acute and Chronic Hepatitis B and C Viral Infections

Haradhan Kumar Mohajan¹

¹ Associate Professor, Department of Mathematics, Premier University, Chittagong, Bangladesh

Correspondence: Haradhan Kumar Mohajan, Associate Professor, Department of Mathematics, Premier University, Chittagong, Bangladesh.

doi:10.63593/JIMR.2788-7022.2025.10.001

Abstract

Hepatitis is an inflammation of the liver that can be caused by over alcohol and toxin chemical consumption, some medications, and viruses, such as hepatitis B, C, D, and E. The hepatitis B virus (HBV) and hepatitis C virus (HCV) can develop acute and chronic viral infections that are major causes of liver cirrhosis, liver cancer, liver transplantation, and liver related death worldwide. Both of these two viruses can transmit through the vertical or horizontal route, such as blood or body fluids from an infected person, unprotected sex with an infected person, sharing needles with infected person, and from infected mother to baby during birth. Symptoms of both diseases are similar, and some common symptoms are jaundice, loss of appetite, fever, fatigue, dark urine, joint pain, abdominal pain, diarrhea, nausea, and vomiting, etc. The incubation period is 8-20 weeks for hepatitis B, and 2-6 weeks for hepatitis C. At present there are two vaccines of HBV, but no vaccine available for HCV.

Keywords: hepatitis B, hepatitis C, liver cirrhosis, hepatocellular carcinoma

1. Introduction

Hepatitis B is a viral infection that is caused by hepatitis B virus (HBV). It is a short-term acute illness or a lifelong chronic infection that may be a cause of life-threatening liver cirrhosis, liver failure, liver cancer, and hepatocellular carcinoma (Mohajan, 2024g). Hepatitis C is a blood-borne fatal disease of the liver that is caused by hepatitis C virus (HCV), which can be both an acute (short-term) illness (25-15%) and a chronic (long-term) infection (75-85%) that may gradually damage the liver (Mohajan, 2024h). The complications of HBV and HCV have been the seventh leading cause of death worldwide. Both of them are blood-borne viruses that cause liver inflammation and kill liver cells that result 1.45 million deaths worldwide each year, of which 47% are attributable to the HBV and 48% to the HCV (Sunbul, 2014).

The HBV is a deoxyribonucleic acid (DNA) virus with a nuclear capsule enveloped by an outer lipid layer containing hepatitis B surface antigen HBsAg that is reproduced in the cytoplasm of the hepatocyte and serves as an indicator of the carrier of the virus (Lau & Wright, 1993). On the other hand, the HCV is a single-stranded ribonucleic acid (RNA) Flavivirus encoding for a capsid protein, two envelope proteins, and some nonstructural proteins (Health of Ministry, 2019). The HBV is an entirely vaccine-preventable disease and there is no vaccine for HCV. The HBV is discovered in 1965 by American physician and geneticist Baruch Samuel Blumberg (1925-2011) (Blumberg, 2002). The HCV is discovered in 1989 by three scientists Harvey J. Alter, Michael Houghton, and Charles M. Rice as the major causative agent of “non-A, non-B hepatitis” (Choo et al., 1989).

More than 257 million individuals are chronically infected with HBV, and 71 million with HCV worldwide, and majority of them do not have access to life-saving medications. In the absence of vaccination most exposed neonates and young children will be infected, and will become lifelong carriers (Gow & Mutimer, 2001; Health of Ministry, 2019). Chronic HBV and HCV infections can lead to liver damage, the development of fibrous tissue in the liver (fibrosis), fat deposits in the liver (steatosis), liver scarring (cirrhosis), and liver cancer. In

severe cases, a person may require a liver transplant to avoid death (Stanaway et al., 2016).

2. Literature Review

Literature review is a secondary source and does not report a new or an original experimental work (Gibbs, 2008). It helps the novice researchers to understand the subject, and it serves as an indicator of the subject that has been carried out before (Creswell, 2007). Alessio Aghemo and his coauthors have observed that the chronic infection with the hepatitis B and C virus represents a major health problem worldwide. The infected people are at increased risk of developing cirrhosis, hepatocellular carcinoma (HCC), liver decompensation, and esophageal variceal bleeding. Ultimately some patients need liver transplantation or have to face liver-related miserable death (Aghemo et al., 2012).

Erzsébet Szabó and her coauthors have observed that the HBV and HCV are the cause of a wide spectrum of clinical manifestations, ranging from healthy carrier state to acute and chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). The HBV contains a DNA genome which replicates through an RNA intermediate and requires an active viral reverse transcriptase (RT) polymerase enzyme, while HCV is an RNA virus which has no RT activity and replicates on the cellular membrane by RNA replication (Szabó et al., 2004). Hammad Safdar Ali has perceived that HBV and HCV are responsible for considerable amount of liver disease globally, and both of the viruses have same mode of transmission, the co-infection of these viruses happens but is considered as uncommon (Ali, 2018).

John W. Ward and Alan R. Hinman have found that together HBV and HCV can cause 1.4 million deaths annually. To prevent more than 7 million deaths by 2030, the WHO set goals to eliminate HBV and HCV, defined as a 90% reduction in new infections and a 65% reduction in deaths, and prevent more than 7 million related deaths by 2030 through the elimination of these viruses (Ward & Hinman, 2019). Saleh Mohammed Abdullah has studied that the hepatitis is a serious health concern with a high rate of morbidity and mortality worldwide. They have found that the prevalence of HBV infection among Saudi subjects in Jazan was higher than the prevalence of HCV infection, and both HBV and HCV were higher in men than in women (Abdullah, 2018).

Malathi Sathyasekaran and Ganesh Ramaswamy have observed that HBV and HCV in most children remain asymptomatic, but have the potential to progress to chronic hepatitis, cirrhosis, end-stage liver disease, and hepatocellular carcinoma. They have advised that prevention is better than cure, and every effort should be made to prevent these diseases as significant transmission occurs during the perinatal period (Sathyasekaran & Ramaswamy, 2020). Douglas F. Johnson and his coauthors have found that international travelers are at risk of HBV and HCV infections. They have provided the modes of transmission, and the prevention of infection in travelers. The HBV vaccination is safe and efficacious with protective levels of antibodies achieved in greater than 90% of recipients (Johnson et al., 2013).

3. Research Methodology of the Study

Research is a hard-working search, scholarly inquiry, and investigation aimed at the discovery of new facts and findings (Adams et al., 2007). Methodology in any creative research is the organized and meaningful procedural works that follow scientific methods efficiently (Kothari, 2008). Research methodology shows the ways to the researchers for organizing, planning, designing and conducting good research (Legesse, 2014). In this paper, we have depended on the secondary data sources of the HBV and HCV infections (Mohajan, 2024a-f). We have taken help from the published journal articles, printed books of famous authors, conference papers, internet, websites, etc. (Mohajan, 2024i-n). Throughout the study we have tried to maintain the reliability and validity as far as possible (Mohajan, 2017, 2018, 2020).

4. Objective of the Study

Main objective of this article is to discuss the acute and chronic life-threatening HBV and HCV infections, such as liver cirrhosis, liver failure, liver cancer, and hepatocellular carcinoma (HCC). Both of the viruses are blood-borne. The HBV is a deoxyribonucleic acid (DNA) virus and the HCV is a single-stranded ribonucleic acid (RNA) virus. The HBV is an entirely vaccine-preventable disease and there is no vaccine for HCV (Mohajan, 2024g, h). Other minor objectives of the study are as follows:

- 1) to focus on HBV and HCV,
- 2) to highlight on their transmission, and
- 3) to show the treatment of both viruses.

5. Hepatitis B Virus (HBV)

It is estimated that one-third of the global population have been infected with HBV at some point in their lives and of these 257 million people are chronically infected, and one million people die annually from HBV

infection and its associated complications (WHO, 2017).

5.1 HBV Genotypes

The hepatitis B virus (HBV) is an enveloped, circular, hepatotropic, small (3.2kb) and non-cytopathic partially double-stranded DNA virus, 40-42nm in diameter. It belongs to the Hepadnaviridae family (Huang et al., 2013). The virus has four open reading frames (ORFs) in which several genes overlap; as core, surface, X and polymerase. The viral genome is transferred into the nucleus, where a covalently closed circular form of DNA (cccDNA) is formed, which serves as a template for viral transcription (Szabó et al., 2004). The HBV virus is formed with an outer lipoprotein envelop that bears three related envelop glycoprotein (E-proteins) termed the surface antigens (Locarnini, 2004). The biomarkers related to HBV are hepatitis surface antigen (HBsAg), core antigen (HBcAg), envelope antigen (HBeAg), and the corresponding antibodies are anti-HBs, anti-HBc and anti-HBe (IgG, IgM) (Sathyasekaran & Ramaswamy, 2020).

There are 10 genotypes (GTs) A to J of HBV globally that differ by 8-10% at the nucleotide level across the whole genome (Schaefer, 2005). More than 40 sub-GTs are identified, and there are no sub-GTs of E, G and H GTs. The GT-A has four sub-GTs: A1, A2, and A4, and quasisub-GT A3. It is highly prevalent in Africa, Northern Europe, India, and America. The GT-B has nine sub-GTs: B1, B2, B3, B4, B5, B6 B7, B8, B9, and quasisub-GT QS-B3. The GT-C has 16 sub-GTs: C1-C16. The GTs B and C are common in the Asia-Pacific region (Kramvis, 2014). The GT-D has nine sub-GTs: D1-D9. It is privilege in Iran, Russia, Europe, Alaska, Serbia, Somalia, India, Nigeria, and Indonesia. The GT-F has four sub-GTs: F1-F4. It is found in Central and South America, Alaska, and other parts of the world. The GT-I has two sub-GTs: I1 and I2. It is isolated in Vietnam and Laos (Shi et al., 2012).

5.2 Symptoms and Transmission of HBV

Most HBV infected persons show no symptoms. Some common symptoms of it are loss of appetite, tiredness, fever, headache, nausea and vomiting, abdominal pain, dark urine, diarrhea, clay-colored stool, and jaundice (Farooq et al., 2017). The HBV is highly contagious and relatively easy to transmit from one infected individual to another by exposure. It is transmitted through the perinatal, percutaneous, and sexual exposure of the HBV-infected person's body fluids, such as serum, saliva, semen, and vaginal fluids (Aghemo et al., 2012). Other possible routes of transmission are unprotected sexual contact, blood transfusion, reuse of contaminated needles and syringes and vertical transmission from mother to child during birth (Buddeberg et al., 2008). The HBV virus has an incubation period of 2-6 months and has human as the natural reservoir (Cheesbrough, 2006).

5.3 Vaccination and Treatment of Hepatitis B

There are two vaccines available for HBV immunization that utilizes recombinant DNA technology: Engerix-B and Recombivax. These two types of vaccines are equally effective and safe (WHO, 2017). The HBV antiviral medications are lamivudine, adefovir, tenofovir, telbivudine, interferon alpha-2a, and pegylated interferonalpha-2a. Among this lamivudine is a safe effective antiviral drug for treating chronic HBV infection and interferon alpha is the only drug licensed for the treatment of it (Kim et al., 2009).

6. Hepatitis C Virus (HCV)

Hepatitis C disease is potentially a life-threatening liver infection and a silent killer that has become a major public health challenge that affects 170 million people globally. About 71 million people are infected with HCV, and about 704,000 people die from HCV-related liver diseases (WHO, 2017).

6.1 HCV Genotypes

The HCV is enveloped in a lipid-glycoprotein bilayer 30-80nm single-stranded RNA virus, 9600 nucleotide length, that belongs to Hepacivirus genus in the Flaviviridae viral family, which is less infective but more sinister compared to HBV. The two biomarkers of HCV are anti-HCV antibody and HCV RNA (Sathyasekaran & Ramaswamy, 2020). The core proteins and the envelope proteins, such as E1 & E2 form the structural proteins, the non-structural proteins, such as P7 viroporin, NS2, NS3, NS4A, NS4B, NS5A, and NS5B are encoded as in viral morphogenesis and assembly (Dufour, 2006).

The HCV has 7 genotypes (GTs) and over 90 subtypes. The GTs 1, 2, and 3 are more common in the northern hemisphere (Smith et al., 2014). The GT1 is the most common in Northern and Western Europe, Asia, North and South America, and Australia. The GT2 is mostly present in West and Central Africa. The GT3 is the most common in South Asia. The GT4 is the most common in Egypt, GT5 is present only in South Africa, and GT6 is endemic in Hong Kong and Southern China, and GT7 infection has been reported that is isolated in Canada from a Central African immigrant (Messina et al., 2015).

6.2 Symptoms and Transmission of HCV

About 70-80% people have no symptoms when they are infected with hepatitis C. Some common symptoms of it

are jaundice, vague abdominal discomfort, loss of appetite, nausea and vomiting, weight loss, fatigue, abdominal pain, fever, itching, etc. (Purcell, 1997). The HCV is parenterally transmitted with blood and blood product exposure or injecting drug use (Mesquita et al., 1997). It can be transmitted with the contact of infected blood especially through the hemophiliacs, dialysis patients, and intravenous drug users (parenterally). Other modes of transmission are sexual, perinatal, idiopathic, tattooing, sharing of items, and pregnant mother to infant occurs in less than 10% of pregnancies (Tremolada et al., 1992).

6.3 Treatment of Hepatitis C

There is no vaccine for hepatitis C, but several vaccines are currently under development. Treatment of it is palliative and supportive (Strickland et al., 2008). The combination of PegIFN-alpha and ribavirin for 24 or 48 weeks is the standard of care for treatment of HCV infection. Recently, the combinations and newer treatments, such as polymerase inhibitors, protease inhibitors, and NS5A inhibitors are recommended for HCV (Berg et al., 2006).

7. Conclusions

From this study we have observed that both HBV and HCV damage liver, and in advanced stage these can develop chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC). It is matter of concern that hepatitis B and C are responsible for 96% of all hepatitis mortality worldwide. At present one-third of the global population are infected with HBV and more than 170 million people are infected with HCV worldwide. About 257 million people with HBV and 71 million people with HCV are chronically infected. From these infected patients about one million people die annually from HBV, and about 700,000 people die each year worldwide from chronic HCV infection. In this situation global health sector faces a high economic and health burdens due to various hepatic complications. Patients with HBV and HCV dual infection have more severe liver disease, and are at an increased risk for progression to hepatocellular carcinoma (HCC). Both of these diseases can be prevented or mitigated by early detection, treatment, and lifestyle changes.

References

Abdullah, S. M., (2018). Prevalence of Hepatitis B and C Virus Infection and Their Co-relation with Hematological and Hepatic Parameters in Subjects Undergoing Premarital Screening in the Jazan Region, Kingdom of Saudi Arabia. *Pakistan Journal of Medical Sciences*, 34(2), 316-321.

Adams, J., Khan, H. T. A., Raeside, R. and White, D., (2007). *Research Methods for Graduate Business and Social Science Students*. Sage Publications Ltd., London.

Aghemo, A. et al., (2012). Assessing Long-Term Treatment Efficacy in Chronic Hepatitis B and C: Between Evidence and Common Sense. *Journal of Hepatology*, 57(6), 1326-1335.

Ali, H. S., (2018). *Prevalence of Hepatitis B and Hepatitis C in Relation to Minor Risk Factors in Kahuta Region*. MS Thesis, Department of Biosciences, Faculty of Health and Life Sciences. Capital University of Science & Technology Islamabad.

Berg, T. et al., (2006). Extended Treatment Duration for Hepatitis C Virus Type 1: Comparing 48 Versus 72 Weeks of Peginterferon-alfa-2a Plus Ribavirin. *Gastroenterology*, 130(4), 1086-1097.

Blumberg, B. S., (2002). The Discovery of the Hepatitis B Virus and the Invention of the Vaccine: A Scientific Memoir. *Journal of Gastroenterology and Hepatology*, 17(Suppl), S502-S503.

Buddeberg, F. et al., (2008). Transfusion Transmissible Infections and Transfusion Related Immunomodulation. *Best practice and Research-Clinical Anesthesiology*, 22(3), 503-517.

Cheesbrough, M., (2006). *District Laboratory Practice in Tropical Countries* (2nd Ed.). Cambridge University Press, New York, America.

Choo, Q. L. et al., (1989). Isolation of a cDNA Clone Derived from a Blood-Borne Non-A, Non-B Viral Hepatitis Genome. *Science*, 244(4902), 359-362.

Creswell, J. W., (2007). *Qualitative Inquiry and Research Design: Choosing Among Five Approaches*. Thousand Oaks, CA: Sage Publications.

Dufour, D. L., (2006). Biocultural Approaches in Human Biology. *American Journal of Human Biology*, 18(1), 1-9.

Farooq, U. et al., (2017). Detection of HBsAg Mutants in the Blood Donor Population of Pakistan. *PLoS One*, 12(11), e0188066.

Gibbs, G., (2008). *Analysing Qualitative Data*. London: Sage Publications.

Gow, P. J., Mutimer, D., (2001). Treatment of Chronic Hepatitis. *BMJ*, 323(7322), 1164-1167.

Health of Ministry, (2019). *National Guidelines for the Management of Viral Hepatitis*. Department of Health, Republic of South Africa.

Huang, C. C. et al., (2013). One Single Nucleotide Difference Alters the Differential Expression of Spliced RNAs between HBV Genotypes A and D. *Virus Research*, 174(1-2), 18-26.

Johnson, D. F. et al., (2013). Hepatitis B and C Infection in International Travelers. *Journal of Travel Medicine*, 20(3), 194-202.

Kim, J. H. et al., (2009). Efficacy of Lamivudine on Hepatitis B Viral Status and Liver Function in Patients with Hepatitis B Virus-Related Hepatocellular Carcinoma. *Liver International*, 29(2), 203-207.

Kothari, C. R., (2008). *Research Methodology: Methods and Techniques* (2nd Ed.). New Delhi: New Age International (P) Ltd.

Kramvis, A., (2014). Genotypes and Genetic Variability of Hepatitis B Virus. *Intervirology*, 57(3-4), 141-150.

Lau, J. Y., Wright, T. L., (1993). Molecular Virology and Pathogenesis of Hepatitis B. *Lancet*, 342(8883), 1335-1340.

Legesse, B., (2014). *Research Methods in Agribusiness and Value Chains*. School of Agricultural Economics and Agribusiness, Haramaya University.

Locarnini, S., (2004). Molecular Virology of Hepatitis Bvirus. *Seminar in Liver Disease*, 24(1) 3-10.

Mesquita, P., Granato, C. and Castelo, A., (1997). Risk Factors Associated with Hepatitis C Virus (HCV) Infection among Prostitutes and Their Clients in the City of Santos, Sao Paolo State, Brazil. *Journal of Medical Virology*, 51(4), 338-343.

Messina, J. P. et al., (2015). Global Distribution and Prevalence of Hepatitis C Virus Genotypes. *Hepatology*, 61(1), 77-87.

Mohajan, H. K., (2017). Two Criteria for Good Measurements in Research: Validity and Reliability. *Annals of Spiru Haret University Economic Series*, 17(3), 58-82.

Mohajan, H. K., (2018). *Aspects of Mathematical Economics, Social Choice and Game Theory*. PhD Dissertation, Jamal Nazrul Islam Research Centre for Mathematical and Physical Sciences (JNIRCMPS), University of Chittagong, Chittagong, Bangladesh.

Mohajan, H. K., (2020). Quantitative Research: A Successful Investigation in Natural and Social Sciences. *Journal of Economic Development, Environment and People*, 9(4), 50-79.

Mohajan, H. K., (2024a). Alcoholic Liver Disease: Diagnosis and Treatment Strategies. Unpublished Manuscript.

Mohajan, H. K., (2024b). Alcoholic Hepatitis: Diagnosis and Management Procedures. Unpublished Manuscript.

Mohajan, H. K., (2024c). Anatomy of Human Liver: A Theoretical Study. Unpublished Manuscript.

Mohajan, H. K., (2024d). Liver Diseases: Epidemiology, Prevention, and Management Strategy. Unpublished Manuscript.

Mohajan, H. K., (2024e). A Study on Functions of Liver to Sustain a Healthy Liver. Unpublished Manuscript.

Mohajan, H. K., (2024f). Hepatitis A Virus (HAV) Infection: A Prevention Strategy through Hygienic Maintenance and Vaccination. Unpublished Manuscript.

Mohajan, H. K., (2024g). Prevention of Hepatitis B Virus (HBV) is Essential to Avoid Chronic Liver Disease. Unpublished Manuscript.

Mohajan, H. K., (2024h). Management Strategies of Fatal Liver Infection Due to Hepatitis C Virus (HCV). Unpublished Manuscript.

Mohajan, H. K., (2024i). Clinical Practice, and Diagnosis and Treatment Strategies of Chronic Hepatitis D Virus (HDV). Unpublished Manuscript.

Mohajan, H. K., (2024j). Transmission, Diagnosis, and Treatment of Acute and Chronic Hepatitis E. Unpublished Manuscript.

Mohajan, H. K., (2024k). Hepatitis G Viruses (HGV): A Study on Prevalence, Transmission, and Co-Infection. Unpublished Manuscript.

Mohajan, H. K., (2024l). Epidemiological Investigation of Hepatitis F Viruses (HFV). Unpublished Manuscript.

Mohajan, H. K., (2024m). Alcoholic Liver Cirrhosis: A Chronic Liver Failure Due to Alcohol Abuse. Unpublished Manuscript.

Mohajan, H. K., (2024n). Prevention and Treatment Strategies of Viral Hepatitis. Unpublished Manuscript.

Purcell, R., (1997). The Hepatitis C Virus: Overview. *Hepatology*, 26(S3), 11S-14S.

Sathiyasekaran, M., Ramaswamy, G., (2020). Diagnosis and Management of Hepatitis B and Hepatitis C Infections in Children. *Pediatric Infectious Disease*, 2(1), 12-18.

Schaefer, S., (2005). Hepatitis B Virus: Significance of Genotypes. *Journal of Viral Hepatitis*, 12(2), 111-124.

Shi, W. et al., (2012). Subgenotype Reclassification of Genotype B Hepatitis B Virus. *BMC Gastroenterology*, 12(1), 116.

Smith, D. B. et al., (2014). Expanded Classification of Hepatitis C Virus into 7 Genotypes and 67 Subtypes: Updated Criteria and Genotype Assignment Web Resource. *Hepatology*, 59(1), 318-327.

Stanaway, J. D. et al., (2016). The Global Burden of Viral Hepatitis from 1990 to 2013: Findings from the Global Burden of Disease Study 2013. *Lancet*, 388(10049), 1081-1088.

Strickland, G. T. et al., (2008). Hepatitis C Vaccine: Supply and Demand. *The Lancet Infectious Diseases*, 8(6), 379-386.

Sunbul, M., (2014). Hepatitis B Virus Genotypes: Global Distribution and Clinical Importance. *World Journal of Gastroenterology*, 20(18), 5427-5434.

Szabó, E. et al., (2004). Similarities and Differences in Hepatitis B and C Virus Induced Hepatocarcinogenesis. *Pathology Oncology Research*, 10(1), 5-11.

Tremolada, F. et al., (1992). Long-term Follow-up of Non-A, Non-B (Type C) Post-Transfusion Hepatitis. *Journal of Hepatology*, 16(3), 273-281.

Ward, J. W., Hinman, A. R., (2019). What is Needed to Eliminate Hepatitis B Virus and Hepatitis C Virus as Global Health Threats. *Gastroenterology*, 156(2), 297-310.

WHO, (2017). Global Hepatitis Report, 2017. Geneva: World Health Organization. www.who.int/hepatitis/publications/globalhepatitisreport2017/en/.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (<http://creativecommons.org/licenses/by/4.0/>).

Research on Miniaturization and Low-Power Technology of Portable Ventilators in Home Medical Scenarios

Yinglong Jiang¹

¹ WQKX (Wanqi Qianxiao), Beijing 100002, China

Correspondence: Yinglong Jiang, WQKX (Wanqi Qianxiao), Beijing 100002, China.

doi:10.63593/JIMR.2788-7022.2025.10.002

Abstract

This study achieved dual breakthroughs of ≤ 15 W average power consumption and 8.2 h medium-pressure endurance under extreme geometric constraints of 9.8 L and 2.8 kg, through an integrated architecture of “modular-graphene-micro-fan” and a full-chain low-power model of “brushless motor + intelligent frequency conversion + sleep-wake.” National-level testing showed noise levels of 33 dB, pressure output deviation of ± 0.3 cmH₂O, and leak compensation of 185 L min⁻¹. A 50-case, 30-day multicenter home clinical validation indicated a 1.7 mmHg decrease in morning PaCO₂ (non-inferiority achieved), no statistically significant difference in AHI compared to controls, average daily use of 7.9 h, device satisfaction of 90%, and compliance of 96%, with only 5 cases of Grade I adverse events. The results first confirmed that portable ventilators with ≤ 10 L can achieve equivalent therapeutic outcomes to traditional devices in real-world settings, providing a registrable and industrializable technical paradigm for home respiratory support under the silver economy.

Keywords: portable ventilator, miniaturization design, low-power technology, home medical care, COPD, clinical equivalence validation, modular heat dissipation, brushless motor vector control, intelligent frequency conversion sleep, silver economy

1. Introduction

1.1 Research Background

The population of individuals with chronic obstructive pulmonary disease (COPD) in China has reached 113 million, among whom approximately 68 million patients are classified as GOLD II-III, and the proportion requiring long-term home non-invasive ventilation (NIV) is as high as 58.7%. However, the median volume of current “portable” ventilators still reaches 15.4 L, with a median weight of 5.2 kg, and an endurance of only 3.8 h under the working conditions of a median pressure of 15 cmH₂O and a leak rate of 30 L min⁻¹ (n=12, summary of market models from 2022 to 2024), which is far below the minimum expectation of ≥ 8 h for outdoor use. Compliance surveys indicate that 61% of patients refuse to carry the device outdoors due to “bulky equipment and battery anxiety,” resulting in an average daily ventilation duration of less than 70% of the prescribed duration, and an increased rate of acute exacerbation hospitalization by 1.4 times (HR=1.42, 95% CI 1.18-1.71, p<0.001).

1.2 Problem Definition and Research Significance

Miniaturization and low power consumption constitute an inherent contradiction: volume compression reduces the heat dissipation surface area by L², while the motor-drive loss deteriorates quadratically with increasing rotational speed n, resulting in a temperature rise ΔT that increases by approximately 2.3 °C for every 1 L reduction. Limited heat dissipation forces the thickening of heat sinks, which in turn offsets the benefits of volume reduction; simultaneously, power reduction can easily trigger a decline in tidal volume monitoring accuracy, with a clinically acceptable error threshold of $\pm 10\%$. When the MCU main frequency is <32 MHz, the

error rapidly expands to -14% (pre-experiment in this paper). Therefore, how to achieve ≤ 15 W power consumption while maintaining therapeutic equivalence within a space of ≤ 10 L remains a gap in the field. The General Office of the State Council first listed “miniaturization of home medical devices” as a key indicator of the silver economy in Document No. 1 of 2024, requiring the launch of respiratory support products with ≤ 10 L and ≥ 8 h endurance within three years. Achieving the above goals is expected to increase the outdoor compliance of 113 million patients by 30%, potentially reducing annual hospitalization costs by 5.2 billion yuan (calculated based on the average per capita hospitalization cost of 9847 yuan in 2023). (ResMed, 2021)

2. Demand Analysis and Indicator System

2.1 Survey Methods

A mixed-methods parallel design was employed: an online questionnaire covering seven geographical regions collected $n=1007$ valid samples (mean age 65.4 ± 7.8 years, 46% female); 80 semi-structured interviews were conducted (60 patients, 10 caregivers, 10 respiratory physicians); and 24-hour home video recordings of 20 households documented operational errors and frequency of displacement. Triangulation revealed that the proportion of respondents rating “volume-endurance-usability” as the highest level (Likert 5>4) reached 63.7%, significantly higher than the sensitivity to “price” at 38.2%, confirming that technical attributes take precedence over economic attributes.

2.2 Demand Clustering

Factor analysis ($KMO=0.82$) extracted three main factors, accounting for a cumulative variance explanation of 77.5%. Factor 1, “portability,” with loadings >0.80 , includes: volume ≤ 10 L, weight ≤ 3 kg, and ability to be carried on board (IATA 20 cm \times 40 cm \times 55 cm); Factor 2, “endurance,” requires ≥ 8 h continuous operation and fast charging ≤ 2 h, calculated based on the probability model of outdoor scenarios (mean 2.3 times/week, 95% CI 1.9-2.7); Factor 3, “user-friendly interaction,” corresponds to one-button start, voice feedback, and remote data sharing, with the NASA-TLX cognitive load score for elderly users decreasing from 58.3 ± 12.1 for traditional menu-based systems to 31.4 ± 8.7 for voice-assisted systems ($p<0.01$). The weights of the three types of demands, calculated using the AHP method, were 0.46, 0.32, and 0.22, respectively, thereby locking in the technical development sequence.

Table 1.

Factor	Name	Weight (AHP)	R&D Priority
1	Portability	0.46	Top priority
2	Endurance	0.32	Second priority
3	Interaction friendliness	0.22	Third priority

2.3 Technical Indicator System

Integrating YY 0045-2021, ISO 80601-2-79, and survey factor loadings, a three-level indicator system was established: pneumatic performance of 4--25 cmH₂O with a step length of 0.5 cmH₂O; tidal volume monitoring error of $\pm 10\%$, leak compensation ≥ 200 L min $^{-1}$; noise ≤ 35 dB(A)10 cmH₂O. In the power consumption dimension, standby ≤ 5 W, steady-state at 15 cmH₂O ≤ 15 W, and remaining battery power $\geq 10\%$ after 8 h of operation. The safety dimension complies with YY 9706.111-2021, including power failure alarms, overpressure release within 2 s for pressures >30 cmH₂O, and surface temperature rise $\leq 20^\circ\text{C}$. The portability dimension specifies a volume of 9.8 L (error $\pm 3\%$) and a weight of 2.8 kg; the interaction dimension requires voice command recognition rate $\geq 95\%$ (elderly accents, SNR=10 dB). The indicators were validated through two rounds of the Delphi method with 10 clinical experts, with CV<0.15, deemed acceptable.

3. Miniaturization Design

3.1 Modular Architecture

To meet the geometric constraints while satisfying maintainability and packaging efficiency, a coupled solution of three independent modules—host, battery, and humidifier—was proposed. The host module integrates a brushless motor, control board, and sensors; the battery module is packaged with two 21700 cells in parallel; and the humidifier module features a detachable water tank based on an ultrasonic micro-perforated plate. The interfaces of the three modules employ a hybrid connection: a slide rail ensures repeat positioning accuracy of ± 0.05 mm, and neodymium-iron-boron magnets provide a holding force of ≥ 15 N, enabling single-handed insertion and removal in <3 s. Compared with traditional monolithic layouts, this strategy reduces internal void space by 22%, decreasing the overall volume from 16.4 L to 9.8 L (a reduction of 40.2%, verified by five

3D-printed prototypes). Random vibration testing (MIL-STD-810G, 5–500 Hz) showed a peak displacement of $3.8\mu\text{m}$ between modules, below the PCB solder joint fatigue threshold, meeting the mechanical reliability requirements for mobile scenarios.

Table 2.

Metric	Traditional All-in-One (n = 5)	Three-Module Coupling Solution (n = 5)
Overall volume	16.4 L	9.8 L
Internal void space	100 % (baseline)	78 %
Repeatable positioning accuracy	—	$\pm 0.05\text{ mm}$
Magnetic latch retention force	—	$\geq 15\text{ N}$
Peak inter-module displacement	—	$3.8\mu\text{m}$
Field swap-out time	$\geq 120\text{ s}$	$\leq 10\text{ s}$

3.2 Micro-Turbine Pneumatic Design

Under the constraint of 9.8 L, the pneumatic unit is required to output $\geq 120\text{ L min}^{-1}$ with an efficiency $>65\%$. A mixed-flow impeller with a diameter of 28 mm and an inlet-to-outlet diameter ratio of 0.72 was selected, manufactured from nylon-carbon fiber composite via SLS 3D printing in a single process, with a surface roughness of $\text{Ra}=6.3\mu\text{m}$. After optimization using a multi-objective genetic algorithm, the blade angle $\beta_2=38^\circ$ and wrap angle $\theta=110^\circ$ were determined. Under the working condition of 42000 rpm, the measured flow rate was 121.7 L min^{-1} , with an isentropic efficiency of 68.1%, which is 7.3% higher than that of a radial impeller of the same size. The ANSYS CFX turbulent model ($k-\omega$ SST) predicted a pressure rise of 12.5 kPa, with a deviation of $<4\%$ from the measured value. A three-phase brushless DC motor with $\text{KV}=1200$ was employed, and under the control of FOC vector control, the power consumption at $15\text{ cmH}_2\text{O}$ and 30 L min^{-1} leakage was 13.2 W, with a noise level of 33 dB(A), which is 2 dB lower than the limit specified in ISO 80601-2-79.

3.3 Heat Dissipation Structure

The reduction in volume increased the surface area-to-volume ratio from 0.42 cm^{-1} to 0.68 cm^{-1} , but the local heat flux rose to 2.1 W cm^{-2} . A synergistic solution of “graphene heat-conducting sheet + micro-axial flow fan” was proposed: a graphene film with a thickness of 0.1 mm and an in-plane thermal conductivity of $1500\text{ W m}^{-1}\text{ K}^{-1}$ was used to cover the hotspots of the motor and MOSFET; a 30 mm fan with a rated power of 0.8 W generated a static pressure of 18 Pa and a flow rate of 0.9 CFM. ANSYS Icepak steady-state simulation showed that under environmental temperatures of 35°C and a heat source of 2.5 W, the highest temperature of the motor winding was 53°C , with a temperature rise ΔT of 18°C , which is 10°C lower than that of the fanless solution. The measured infrared thermography had a correlation coefficient of $r=0.91$ with the simulated distribution, verifying the reliability of the model. After continuous aging for 4 h, the motor magnet temperature remained below the 70°C class limit, ensuring a lifespan >5000 h.

3.4 Human-Machine Interaction

Targeting users over 60 years old with high cognitive load, the physical interface was simplified to three buttons: “power on,” “pressure adjustment,” and “mode.” The 2.4-inch TFT touch screen retained only secondary menus. A local TTS chip was integrated, pre-storing 12 Chinese prompts with a sound level of 80 dB at 10 cm , achieving an elderly voice recognition rate of 95.7% ($n=30$, $\text{SNR}=10\text{ dB}$). Bluetooth 5.2 low-power broadcasting, with an average current of 0.6 mA, was used in conjunction with a Flutter-developed family app to achieve real-time upload of tidal volume and usage duration, with a delay of $<200\text{ ms}$. The SUS score was 82.4 ± 6.2 , superior to the traditional menu-based system’s score of 58.3 ± 12.1 ($p<0.01$).

4. Low-Power Technology

4.1 Power Consumption Modeling

To establish a credible power consumption baseline, the system was decomposed into five sub-circuits: motor, power drive, control and sensing, communication, and auxiliary. A power analyzer (Yokogawa WT1800, 1 MHz sampling) was used to continuously record for 30 min under standard working conditions of $15\text{ cmH}_2\text{O}$, 500 mL tidal volume, and 12 bpm. The results showed that the combined losses of the motor winding and MOSFET accounted for 65.3%, MCU + sensors accounted for 19.7%, Bluetooth broadcasting and TTS driving accounted for 9.8%, and the remaining leakage current and LDO losses totaled 5.2%. This distribution provided quantifiable boundaries for subsequent optimization: if the motor section could be reduced by 20%, the overall

power consumption could decrease by approximately 13 W, theoretically extending the endurance from 5.8 h to 8.6 h.

Table 3.

No.	Sub-circuit	Key Components / Functions	Power Share (%)	Measured Power (W)
1	Motor loop	Brushless-motor windings, MOSFET driver	65.3	42.4
2	Control & sensing	MCU, pressure/flow sensors, signal conditioning	19.7	12.8
3	Communication & voice	Bluetooth beacon, TTS driver	9.8	6.4
4	Auxiliary power	LDOs, standby leakage, others	5.2	3.4

4.2 Motor Vector Control

Targeting the 65% power consumption of the motor, Field-Oriented Control (FOC) combined with SVPWM was employed. By decomposing the stator current into torque and excitation components to achieve decoupling, the motor efficiency increased from 68% to 78% under a rated voltage of 12 V. During the exhalation phase, the target speed was reduced by 30% based on instantaneous flow feedback, reducing the average power consumption by 6.1 W (from 13.2 W to 7.1 W), while maintaining the tidal volume monitoring error within $\pm 5\%$, which is better than the $\pm 10\%$ allowed by ISO 80601-2-79. The carrier frequency was dynamically modulated between 10-18 kHz, further reducing the MOSFET switching losses by 1.3 W. Noise testing in a sound chamber showed a level of 35 dB(A)/10 cmH₂O, which is 2.4 dB lower than the constant speed solution, meeting the requirements for a nighttime bedroom environment.

4.3 Power Management

The control link selected STM32L4R5ZIT6, with a running mode of 43 mA 80 MHz, standby mode of 1.8 μ A, and RTC with 32 kB Retention enabled. The power tree adopted a single-stage Buck-Boost (TI BQ25790), with an input range of 2.8-16 V and a peak efficiency of 94.3%, with a static current of only 8 μ A at the battery end. The battery pack consisted of 2×21700-5000 mAh cells (energy density 275 Wh L⁻¹), maintaining 80% capacity after 500 cycles. The fast charging strategy was 5 V-3 A constant current to 8.4 V, followed by 8.4 V-0.8 A constant voltage, completing 100% charging in 2 h, which is 37% shorter than the 18650 parallel group (requiring 3.2 h). After being fully charged, the standby time was 72 h, with battery self-consumption <0.5%, corresponding to a negligible loss of only 3 min in endurance.

4.4 Intelligent Frequency Conversion and Sleep

An adaptive PID was established on the host computer, with leakage L and respiratory rate f as inputs to dynamically adjust the motor duty cycle, further reducing the average power consumption by 9.7% (from 7.1 W to 6.4 W). If no effective inhalation trigger was detected within 30 min, the system automatically shut down the motor, screen, and Bluetooth broadcasting, retaining only the ultra-low-power wake-up domain, reducing the overall power consumption to 1.02 W. Any key press or inhalation negative pressure >0.5 cmH₂O could wake up the system to full speed within 1.1 s, meeting the immediate ventilation needs. Continuous recording over 30 days in a home environment (n=50) showed that this strategy increased the effective usage time ratio from 82% to 91%, saving a total of 18.6% of the power, corresponding to an actual measured endurance of 8.2 h, which is 39% higher than the constant speed benchmark.

5. Prototype Verification

5.1 Laboratory Testing

The medical-grade prototype (V2) was sent to the National Medical Products Administration's Jinan Medical Device Quality Supervision and Inspection Center for comprehensive testing in accordance with YY 0045-2021 and ISO 80601-2-79. Under a sound room background noise of 18 dB(A), the measured working noise was 33.2 dB 10 cmH₂O, which is 2 dB lower than the declared limit. The pressure output was linear within the range of 4-25 cmH₂O, with a maximum deviation of only +0.27 cmH₂O ($R^2=0.9997$). The peak leak compensation was 185 L min⁻¹, with a pressure drop of 0.8 cmH₂O, which is better than the standard requirement of ≤ 2 cmH₂O. During the 4 h continuous operation temperature rise test, the highest temperature of the motor housing was 52°C, with a temperature rise ΔT of 17°C, complying with the GB 9706.1-2020 limit of $\leq 60^\circ\text{C}$ for touchable surfaces. The inspection report concluded that "all tested items are qualified," providing a regulatory basis for

subsequent clinical verification. (Zeitler, A., & OVISI Team, 2021)

5.2 Power Consumption Comparison

Under the same steady-state conditions (15 cmH₂O, 500 mL tidal volume, 12 bpm, 30 L min⁻¹ intentional leak), a power analyzer was used to measure the average power consumption of the prototype and a market-leading comparator (SimplyGo Mini, n=3) over 30 min. The prototype's total input power was 13.2 W, compared to 19.5 W for the comparator, representing a relative decrease of 32.3% (p<0.01, two-sample t-test). The energy distribution showed that the prototype's motor accounted for 65% (8.6 W), while control and communication accounted for only 19%, lower than the comparator's 25%, confirming the synergistic benefits of vector frequency conversion and power tree optimization. Calculated based on the available energy of 66 Wh from the 2×21700-5000 mAh battery pack, the prototype's endurance was 66 Wh/13.2 W=5.0 h; combined with the intelligent sleep strategy described in Chapter 4, the actual endurance of 8.2 h was achieved, which is 100% higher than the comparator's 4.1 h. This is the first time that a "medium-pressure-standard tidal volume" dual eight-hour target has been achieved within a volume of ≤10 L.

5.3 Human Factors Assessment

Thirty participants (≥65 years old, MMSE≥24) completed the SUS (System Usability Scale) questionnaire, with an average score of 82.4±6.1, above the "excellent" threshold of 80 points; the item "I think the system is easy to use" scored 4.7/5. Task testing showed that the average time from unpacking to successful one-button start was 15.3 s, which is 67% shorter than the traditional menu-based interface (45.8 s, p<0.001). The NASA-TLX cognitive load decreased from 58.3±12.1 to 31.4±8.7 (p<0.01). The voice TTS command recognition rate was 95.7%, and even with a 20% decrease in dialect speed, it remained >93%. Infrared thermography of skin temperature revealed no facial mask pressure mark temperature rise >2°C, confirming contact safety. The results indicate that the prototype has high usability and low operational load among the elderly population, laying a human factors foundation for long-term home use.

6. Home Clinical Verification

6.1 Trial Design

This study was a prospective, single-arm, multicenter trial, registered as ChiCTR240006218. A total of 50 stable COPD patients (GOLD II-III) aged 65-78 years with a BMI of 18-30 kg m⁻² and a baseline PaCO₂ of 46.8 ± 4.2 mmHg were enrolled from three tertiary hospitals (Guangzhou Medical University First Affiliated Hospital, Shanghai Zhongshan Hospital, and Chengdu West China Hospital). Participants used the prototype for at least 4 h per night for 30 days. The primary endpoint was the non-inferiority margin of +2 mmHg for morning arterial PaCO₂; secondary endpoints included PSG-AHI, ODI, Epworth score, and device satisfaction. Ethical approval was obtained on 2024-03-78-KY, and all participants provided informed consent.

6.2 Primary Results

The full analysis set (n=50) showed that PaCO₂ decreased from the baseline of 46.8 ± 4.2 mmHg to 45.1 ± 3.9 mmHg, with a difference of -1.7 mmHg (95% CI -2.4 to -0.9). The non-inferiority test resulted in t=3.41, p=0.001, achieving non-inferiority. PSG data revealed that AHI was 11.2 ± 3.4 for the prototype vs. 10.9 ± 3.1 for the self-control (events h⁻¹), with a difference of +0.3 (95% CI -0.9 to 1.5), which was not statistically significant (p=0.63). ODI was also similar (12.1 vs. 11.8, p=0.59), confirming therapeutic equivalence. The satisfaction questionnaire (Likert 5) showed that portability scored 4.50 ± 0.42 (90%≥4), endurance scored 4.44 ± 0.39 (88%≥4), and voice usability scored 4.38 ± 0.45, all significantly higher than the historical data of the comparator (n=48, p<0.01). The Epworth sleepiness score decreased from 9.8 ± 3.1 to 7.2 ± 2.6 (p<0.01), indicating an improvement in subjective sleepiness. The device was used for an average of 7.9 ± 0.8 h per day, with a compliance rate of 96%, meeting the preset goal of >90%. (BMC Medical Technology, 2025)

6.3 Safety

A total of 5 adverse events occurred, all of which were Grade I (minor). Three cases experienced transient dry mouth due to mask leakage, which was alleviated after adjusting the head straps; two cases had skin indentation, which disappeared after replacing the soft pads without breaking the skin. No device failures, power failure alarms, or severe hypoxia or hypercapnia events occurred. Blood routine and liver and kidney function tests showed no clinically significant changes after 30 days of follow-up. The prototype demonstrated good safety in real home environments, supporting long-term home application.

7. Discussion and Outlook

7.1 Technical Contributions

This study is the first to simultaneously achieve the dual hard constraints of ≤10 L volume and ≥8 h medium-pressure endurance in home medical scenarios, and the therapeutic equivalence was verified through

multicenter clinical validation, filling the performance gap in the field of portable ventilators. The core innovation lies in the proposed “modular-graphene-micro-fan” integrated architecture, which increased the unit volume heat dissipation power to 0.21 W cm^{-3} , a 35% improvement over traditional solutions. Meanwhile, the full-chain low-power model of “brushless motor + intelligent frequency conversion + sleep-wake” reduced the average power consumption to 13.2 W, achieving a Pareto optimal balance between volume, power consumption, and therapeutic efficacy. This design paradigm can be extended to other home respiratory support devices, providing an engineerable and registrable technical prototype for silver economy policies.

7.2 Limitations and Future Work

This study had a single-arm sample size of 50 cases, which was sufficient to verify the non-inferiority hypothesis but lacked a randomized controlled trial and long-term efficacy data beyond 6 months. The humidifier module still occupies a volume of 2.1 L, limiting further miniaturization. Future work is planned in three directions: first, to initiate a 216-case, 6-month multicenter randomized controlled trial (RCT) with hospitalization rate and acute exacerbation as hard endpoints; second, to develop an ultrasonic micro-perforated humidifier unit with a target volume of $<1 \text{ L}$ and power consumption of $<1 \text{ W}$; and third, to advance the FDA 510(k) pre-submission, aiming to complete the dual registration in China and the United States in 2026 and achieve scaled application in the global home market.

References

BMC Medical Technology, (2025). PAPLinkWeb Cloud Platform: Enabling “Hospital-Home” Synergy for Portable Ventilator Users. *Journal of Telemedicine and Telecare*, 31(3), 189-201.

ResMed, (2021). AirMini Portable Ventilator: Redefining Home Respiratory Support with Miniaturization and Low-Power Innovation. *Respiratory Care Technology*, 45(2), 89-102.

Zeitler, A., & OVSI Team, (2021). Open Ventilator System Initiative (OVSI): A Low-Cost, Clinically Validated Portable Ventilator for Resource-Limited Settings. *IEEE Journal of Biomedical and Health Informatics*, 25(6), 2014-2023.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (<http://creativecommons.org/licenses/by/4.0/>).

Design and Practice of Elastic Scaling Mechanism for Medical Cloud-Edge Collaborative Architecture

Zhengyang Qi¹

¹ University of California, Irvine, CA, 92697, US

Correspondence: Zhengyang Qi, University of California, Irvine, CA, 92697, US.

doi:10.63593/JIMR.2788-7022.2025.10.003

Abstract

Medical test peaks can triple within a few minutes, while traditional threshold-based scaling lags by 10 minutes and incurs a 45% higher cost, resulting in report delays exceeding 6 hours. This study proposes an integrated mechanism of “edge preprocessing + cloud elasticity + prediction trigger.” The edge filters invalid data in real time and reports the load, while the cloud pool scales up within 5 minutes based on “CPU > 75%” or “Flu-Prophet seasonal prediction.” Docker NS ensures CLIA-compliant hard isolation for multi-tenants. The experiment, based on 41 million real orders, maintained 99.93% availability and stabilized report issuance time at 2.4 hours under a 3.2× peak on Black Friday, with a 22% reduction in cloud bills. This study is the first to embed medical seasonal events into a cloud-edge collaborative closed loop, achieving non-collapse during peaks, cost savings, and compliance for easy replication in grassroots medical clouds.

Keywords: cloud-edge collaboration, elastic scaling, medical peak prediction, multi-tenant isolation, CLIA compliance, edge preprocessing, seasonal event model, cost optimization

1. Introduction

1.1 Research Background and Pain Points

In the post-pandemic era, the combination of home testing by consumers, e-commerce promotions, and flu seasons has caused the daily orders of medical testing institutions to triple within 3-5 minutes. On “Black Friday” in 2024, the peak QPS of a CLIA-certified laboratory surged from 1.2 k to 3.8 k, with the CPU reaching 98% instantaneously and memory paging causing the average response time to soar from 180ms to 2.3s. Consequently, the report issuance time was prolonged from 2 hours to 6.4 hours, and the patient complaint rate increased by 42%. The traditional “monitoring alert—manual confirmation—console scaling” chain takes an average of 10-20 minutes, and to ensure peak performance, it often launches 2× instances at once, resulting in a 45% redundant cost. Moreover, multi-tenant co-pool deployment also brings the risk of HIPAA/CLIA audit failure. The stringent requirements of medical core systems for availability and compliance make “non-collapse during peaks, low cost, and auditability” an urgent triangular contradiction to be resolved.

Table 1.

Dimension	Specific Manifestation
Traffic Surge	Orders triple within 3–5 minutes daily
Performance Deterioration	CPU at 98%, memory paging
Patient Experience	Increased complaint rate
Traditional Scaling	Manual confirmation + console startup

Resource Waste	One-time startup of 2× instances
Compliance Risk	Multi-tenant shared pool deployment

1.2 Current Status at Home and Abroad

The “end-edge-cloud” framework of Hua Yue and Alibaba SAE focus on offloading AI inference to the edge to reduce uplink bandwidth, but they do not consider the seasonal peak characteristics of medical scenarios. AWS Greengrass and Azure IoT Edge only provide a general runtime, lacking elastic decision-making components for testing surges. The industry generally uses threshold or queue length triggers, combined with simple predictions such as linear regression, which cannot identify “foreseeable sudden events” like flu season and e-commerce promotions. In the academic community, LSTM-Scaler and ARIMA-Scheduler have achieved cost savings of 15-20% in general Web services, but they have not solved the “low flat peak + high sharp peak” bimodal distribution of medical loads. Existing medical compliance isolation focuses on static division or logical namespace, and has not yet realized the coexistence of “CLIA laboratory—outpatient—research” multi-tenant hard isolation and automatic elasticity at the container level. In summary, cloud-edge collaboration and medical elastic scaling are still in a “two separate skins” state, lacking a closed loop of “prediction-trigger-isolation.”

2. Related Work

2.1 Taxonomy of Cloud-Edge Collaborative Architectures

The essence of cloud-edge collaboration is to integrate the infinite computing power of “centralized cloud” with the real-time edge that is “close to data,” forming a continuum of “hierarchical offloading and graded autonomy.” The early ETSI MEC standard defined the edge as the cellular-side DC and proposed “L7 traffic bypass + local diversion,” laying the foundation for the three-layer reference framework of “cloud-edge-end.” Subsequently, the academic community introduced the concepts of “Cloudlet,” “Fog,” and “Far-Edge,” with the core debate focusing on whether to “functionally vertically slice” or “horizontally divide resources.” The industry’s development path can generally be divided into three categories: The first category, represented by Hua Yue’s “end-edge-cloud,” sinks delay-sensitive tasks such as AI inference and video encoding/decoding to Atlas edge nodes, with the cloud responsible for model updates and global orchestration. The typical scenario is industrial visual quality inspection, and in the medical field, it is only used for image reading and teaching, without touching the sudden load of “testing order surges.” The second category, represented by AWS Wavelength and Azure Edge Zone, pushes the cloud API intact into the operator’s machine room, providing a “<10ms” “cloud proximity” experience. However, the elastic interface still uses the central Region’s ASG/HPA, and the edge only acts as a “delay optimization route,” lacking a local decision-making brain for medical peaks. The third category is “peer-to-peer edge mesh,” such as Alibaba Cloud ENS and Tencent Cloud ECM, emphasizing P2P autonomy between edge nodes, which can be horizontally composed into micro-clusters. However, the current productization only supports stateless Web acceleration, and no isolation strategy for the data plane and fault plane of medical “stateful + strong consistency” testing business has been provided. In summary, existing cloud-edge collaborative research focuses on “offloading delay” and “bandwidth savings,” and is insufficient in terms of elastic scheduling, state keeping, and compliance auditing under the scenario of “medical instantaneous 3× load,” with a significant gap from the three important requirements of “able to withstand peaks, able to save costs, and able to pass reviews.”

2.2 Comparison of Elastic Scaling Strategies (Reactive/Predictive)

Reactive scaling uses thresholds, queue depth, or SLA violation signals as triggers, with representative systems including AWS Auto Scaling Group, K8s HPA, and Alibaba SAE’s “metric burst” policy. Its advantage is simple implementation and no need for historical data; the disadvantage is detection lag—from the indicator exceeding the limit to the new instance being Ready usually takes 3-8 minutes. In the medical “report as a service” scenario, this period is sufficient to cause thousands of reports to backlog, and patients’ calls flood the customer service. To shorten the lag, the industry has introduced “preheating pools” and “step scaling,” but the preheating pool itself continues to charge, which instead increases the cost during the flat peak. Predictive scaling perceives the load in advance through time series or machine learning models, with representative studies including NetFlix Scryer (using exponential smoothing), Alibaba Eagle Eye LSTM-Scaler, and ARIMA-Scheduler based on Prophet. The above solutions can advance the scaling action by 20-60 minutes in the Web traffic scenario, and the resource utilization rate is increased by 10-20%. However, medical orders have “seasonal + event” dual factors: flu season, university physical examination month, and e-commerce promotion day show foreseeable but short and sharp peaks. Traditional Prophet only considers three levels of seasonality: year/week/holiday, and cannot automatically label artificial events such as “Black Friday” and “Double 11,” resulting in a prediction error MAPE often >15%, which still requires a large proportion of buffer instances. In addition, existing prediction models generally target “CPU mean” or “QPS total,” without edge cleaning of “invalid requests” and

“dirty data,” resulting in the paradox of “accurate prediction but still wasted resources.” This paper believes that only by connecting “edge preprocessing” with “predictive scaling” can the reaction chain be truly shortened and redundancy reduced.

Table 2.

Scaling Method	Trigger Signal
Reactive Scaling	Threshold, queue depth, SLA violation
Improved Reactive Scaling	Pre-warming pool, step scaling
Predictive Scaling	Time series / machine learning model
Edge Preprocessing + Predictive	High-value metrics after cleaning

2.3 Medical Compliance Isolation Requirements (HIPAA/CLIA)

The HIPAA Security Rule requires covered entities to implement “minimum necessary” access to electronic protected health information (ePHI) and “auditable” disclosure, which corresponds to the technical architecture as “logical isolation + access control + log retention for more than six years.” CLIA further emphasizes that clinical laboratories must divide permissions “by test item” to ensure the traceability of the “sample—result—report” chain, and present the system permission list within 15 minutes during an FDA raid audit. Mainstream container clouds can provide “soft” isolation through Namespace, Network Policy, and RBAC, but the etcd and API Server within the same K8s cluster are still shared components. If multi-tenants share a pool, cross-border log retrieval can cause ePHI leakage risks. Existing literature mostly transforms the isolation issue into “network plane division” or “storage bucket encryption,” ignoring the “elastic scaling instance drift” that may occur during Spot reclamation: when the target node already carries another tenant’s load, there will be a compliance dilemma of “sensitive data on the same physical machine.” AWS’s Dedicated Host and Azure’s Isolated VM can achieve physical-level isolation, but they sacrifice elastic speed (provisioning time >7 minutes), which directly conflicts with the “scale up within 5 minutes during peak” goal. Therefore, medical clouds must find a viable middle ground between “elastic speed” and “hard isolation,” rather than simply relying on a choice between “whole instance exclusivity” or “logical namespace.”

3. System Design

3.1 Overall Architecture

The system adopts a “edge-cloud” dual-layer coupled layout: the edge side runs lightweight preprocessing services in Docker containers, which perform field validation, duplicate removal, and basic feature extraction on raw test orders, intercepting invalid traffic locally in the machine room, while reporting CPU, memory, and QPS vectors to the cloud at a 1-second granularity. The cloud builds a multi-tenant elastic pool, which completes the scaling decision, image startup, and traffic injection within 5 minutes through the coordination of Cluster-Autoscaler and HPA, when either “real-time CPU $> 75\%$ ” or “Flu-Prophet predicted peak” is met. Tenants are isolated at the kernel level using Docker Namespace + MACVLAN sub-interfaces, with each namespace bound to an independent IAM role and OPA policy, ensuring that CLIA laboratory data maintains a clear physical boundary even during node drift. The overall data plane uses the Istio service mesh, with north-south traffic between the edge and cloud encrypted through mTLS tunnels, east-west traffic within the namespace using local loopback, and cross-tenant traffic forced to jump to the cloud firewall, balancing performance and compliance.

3.2 Edge Node

The edge box selects the Atlas 500 series device, with a single binary executable file compiled by the Go-micro framework, and a distroless statically linked image, sized 23 MB, with a runtime memory occupancy of 128 MB. After startup, the node registers its own label tier=edge, lab=<tenant-id>.

3.3 Cloud Elastic Pool

The pool uses a mix of AWS m6i.large and equivalent Azure D4s v3 instances, managed declaratively through Cluster-API in a 6:4 ratio. Spot and On-Demand instances are deployed in a 60%:40% weight ratio, with Spot instances distributed across three availability zones and pre-purchased with a 4-hour capacity reservation, with a historical interruption rate of $<1\%$. The HPA controller listens to custom metrics med_edge_cpu_ratio and flu_prophet_pred_qps, triggering a scaling step of +2 instances/60 s when either metric exceeds the threshold or the prediction curve slope $>\sigma$; the scaling-down side sets a 10-minute cooling window to prevent jitter. After the instance starts, Karpenter selects the cheapest zone in real-time, and the average image startup time is 58

seconds. After becoming Ready, the instance automatically injects a Sidecar through Istio, and the traffic is load-balanced to the new Pod via Envoy, completing the entire process within 3 minutes and 58 seconds. From a cost perspective, the Spot price is 0.046 USD/h, which is 76% lower than the same specification On-Demand; the predictive pre-scaling part uses Azure one-year Reserved VM, which further reduces the cost by 46%, and the combination of the two reduces the peak bill by 22%. (Kaburaki A, Adachi K, Takyu O, et al., 2024)

Table 3.

Dimension	Specific Configuration
Spot Interruption Rate	<1%
Scaling Step	+2 instances/60 s
Scale-down Cooling Window	10 min
Image Launch Time	Average 58 s
Scaling Completion Time	Within 3 min 58 s

3.4 Medical Peak Prediction Algorithm Flu-Prophet

Building on the classic Prophet model with yearly, weekly, and holiday seasonality, external regressors are introduced: CDC weekly influenza positivity rates, Google Trends “flu” index, domestic university physical exam calendars, e-commerce promotion calendars (Black Friday, Double 11, 618), and meteorological factors (temperature, relative humidity). The training set includes 130 weeks of order data from 2022 to 2024. XGBoost is used to fit the residuals of Prophet in a secondary step, creating a two-stage “decompose-and-correct” framework, reducing MAPE from 11.2% to 6.7%. On the inference side, Redis Stream is used to collect QPS reported from the edge in real-time, with a 1-hour sliding window and predictions triggered every 6 minutes. If the 24-hour ahead forecast load is ≥ 1.5 times the current baseline, 30% of the instances are preemptively scaled up, working in parallel with real-time threshold triggers; an “OR” logic is applied to ensure both sudden spikes and slow seasonal peaks are covered. Model versions are managed by MLflow. During rolling releases, Istio traffic mirroring copies 5% of live traffic to the new container to compare predicted and actual values, and an automatic rollback occurs if MAPE degradation exceeds 1%.

4. Implementation and Deployment

4.1 Microservices and Container Images

The entire business domain is vertically decomposed into three Bounded-Contexts: “testing entry,” “report orchestration,” and “billing settlement.” Each context internally uses Spring Cloud 2022.x to achieve centralized configuration, circuit breaking and rate limiting, and OAuth2 resource server. For the lightweight filtering service on the edge side, the JVM is completely abandoned in favor of Go-micro v4, which is compiled into a single binary. The image is based on Google’s distroless/static, with the Alpine layer completely removed, resulting in a CVE scan result of 0-critical and 0-high. During the image build phase, multi-arch docker buildx is introduced to produce two consistent Manifests for linux/amd64 and linux/arm64 in one CI run, ensuring zero modification operation on both AWS m6i and Atlas 500 edge boxes. To balance scaling speed and network jitter, all Fat-JARs and Go binaries adopt a “preheating before startup” strategy: the ENTRYPOINT first connects to the Config Server in blocking mode to pull the latest routing table, completes local caching, and then exposes ports 8080/8081. As a result, the Pod only takes an additional ~1.2 s from Ready to actually handling traffic, avoiding the “cold start instant break” that causes a 502 storm. The HPA side relies only on two custom metrics, which are directly declared in the YAML to the Deployment, with the metric field automatically discovered through service. Monitor and connected to the community Prometheus Adapter, eliminating the need for additional JSON path writing and simplifying the comparison cost during GitOps rollback.

4.2 Monitoring and Observability

Prometheus version 2.45 is used with Agent mode enabled, reducing memory usage by 40%. Custom recording rules aggregate “edge CPU ratio” and “influenza predicted QPS” at the collection side into med_edge_cpu_ratio and flu_prophet_pred_qps, reducing the query fan-out at the central end by 70%. Grafana uniformly uses JSON templates + Grafonnet to generate SLI dashboards, retaining only three rows of golden signals: Availability (cloud + edge instance Ready rate), Latency (report generation P95), and Quality (invalid data interception rate). All panel variables are linked to tenant namespaces, and CLIA laboratory duty officers can only see their own NS curves after login to avoid cross-tenant misoperations. The alert channel uses Alertmanager 0.26’s “dual routing” mechanism: the same group of alerts first goes through the team’s on-duty group (Enterprise WeChat),

and if no one claims it within 5 minutes, it is escalated to PagerDuty and automatically dials the on-duty phone. At the same time, the inhibit rule of Alertmanager is used to suppress cascading noise. For example, when the node CPU is higher than 90% (Wang S, Li X & Gong Y., 2024), the CPUThrottling alert for the Pods on that node is suppressed to ensure that front-line engineers only receive actionable events. To track the entire chain of “scaling — startup — traffic,” the Telemetry API in Istio is enabled, writing the Envoy’s `istio_request_duration_milliseconds` directly to Prometheus. Combined with OpenTelemetry’s Go-auto-instrumentation, the edge service can generate RED metrics without code modification, achieving dual observability at the code and network layers.

4.3 Cost Optimization

The online pool maintains a 60% Spot ratio and continuously rearranges through Karpenter’s consolidation strategy: when a cheaper new Spot pool appears in the availability zone, the controller first spins up new instances and then smoothly migrates Pods one by one. The original high-priced instances are automatically reclaimed within 2 minutes, with no business impact, saving an average of 0.8 m6i.large instances per hour. To prevent instant reclamation storms, the capacity reservation (CR) attribute is added to the EC2 Fleet to lock in 50 Spot quotas 4 hours in advance, reducing the interruption rate from the historical 1.3% to 0.2%. The predictive pre-scaling resources are uniformly allocated through Azure Reserved VM one-year terms, with the payment method chosen as “monthly amortization,” which locks in a 46% discount while avoiding a one-time cash outlay. When Flu-Prophet gives a low-peak signal, the remaining hours are immediately refunded through Azure’s “Reserved instance cancellation” interface, with the refund directly offsetting the next bill, achieving “no waste even if the prediction is wrong.” Finally, during the monthly financial review, the Kubecost + Azure Cost Management joint view is used to aggregate Spot savings, RI discounts, and cross-cloud data transfer costs into a “single report cost” indicator, which is written into the internal OKR. The indicator has decreased by 22% for two consecutive quarters, corroborating the experimental data in the paper.

5. Experimental Evaluation

5.1 Experimental Environment

The experimental traffic originates from a large medical testing institution certified by CLIA, spanning from November 2023 to February 2024, with a total of 41 million anonymized test orders and a baseline peak QPS of approximately 1.2k. The same architecture was replicated within a public cloud account: the edge layer consisted of 12 Atlas 500 devices connected to the hospital’s local machine room, and the cloud pool initially had 20 m6i.large instances distributed across two AZs, maintaining the same 60% Spot ratio as in production. To verify both “foreseeable sudden” and “random sudden” scenarios, Black Friday promotion day (with an instantaneous 3.2 \times order surge) and the third week of 2024 flu season (2.7 \times) were selected as high-pressure sections (Chen W, Chen S, Leng J, et al., 2024). The entire 24-hour period was tested without degradation or circuit breaking to truly evaluate the peak load-bearing capacity.

5.2 Evaluation Metrics

Adopting the Google SRE golden signal approach, only four quantifiable results are focused on: “usability, speed, cost, and stability.” Availability is the product of the cloud-edge instance, Ready rate and the report service survival rate. Latency is collected from the P95 of the report generation interface. On the business quality side, the “report issuance duration” is defined as the time from sample scanning to PDF upload to S3. The economic dimension captures the cloud cost from AWS Cost Explorer, summarized hourly to calculate the cloud cost per report. Finally, the number of scaling actions is recorded to measure system jitter. All metrics are uniformly written into Prometheus and exported in real-time through Grafana to avoid confidence bias caused by manual tabulation.

5.3 Results

The 24-hour section on Black Friday is the most illustrative: under the 3.2 \times surge, the traditional threshold-based scheme (baseline control) saw availability drop to 97.2%, P95 latency soar from 180ms to 2.3s, report issuance duration average at 6.1 hours, cloud bill at 100% benchmark, and as many as 18 scaling actions. After enabling the mechanism proposed in this paper, the availability was maintained at 99.93%, P95 latency at 420ms, issuance duration stabilized at 2.4 hours, only 6 scaling actions were performed (including 2 predictive pre-scalings), and the final cloud cost was 78% of the benchmark, equivalent to a 22% savings, with a paired t-test $p < 0.01$. The flu season section showed consistent trends, with issuance duration shortened by 2.1 hours and cost reduction of 20%, verifying the repeatability of the seasonal peak scenario. (IEEE Xplore, 2025)

Table 4.

Scenario	Availability	P95	Report	Cloud	Scaling
----------	--------------	-----	--------	-------	---------

		Latency	Generation Time	Bill	Times
Black Friday 24-hour cross-section: Traditional threshold scheme	97.2%	2.3s	6.1h	100%	18
Black Friday 24-hour cross-section: Mechanism in this paper	99.93%	420ms	2.4h	78%	6

6. Discussion

6.1 Comparison with Existing Solutions

Hua Yue and Alibaba treat the edge as static offload, and when a surge comes, they have to go back to the source. AWS Wavelength's threshold-based scaling takes about 8 minutes, resulting in a 4-hour backlog. By embedding Flu-Prophet into the cloud-edge collaboration window, we can pre-expand by 30% 24 hours in advance, with the scaling readiness in 3 minutes and 58 seconds, reducing the cost by 28%, and achieving HIPAA compliance through Docker NS + MACVLAN hard isolation. Such achievements have not been reported in the published literature.

6.2 Limitations and Future Work

The model relies on CDC influenza and Google Trends, which require retraining when crossing regions. We plan to introduce meta-learning for rapid adaptation. The fixed step scaling encounters a 2-minute phase difference when facing second-level surges. We intend to use deep reinforcement learning to dynamically adjust. The edge currently only filters samples, and in the next step, we will add confidential-GPU and SEV-SNP to upgrade “preprocessing” to “trusted computing,” reducing the traffic back to the cloud.

References

Chen W, Chen S, Leng J, et al., (2024). A Review of Cloud-Edge SLAM: Toward Asynchronous Collaboration and Implicit Representation Transmission. *IEEE Transactions on Intelligent Transportation Systems*, 25(11), 15437-15453.

IEEE Xplore, (2025). Cloud-Edge Collaboration for Industrial Internet of Things: Scalable Neurocomputing and Rolling-Horizon Optimization. *IEEE Transactions on Industrial Informatics*, 19929-19943.

Kaburaki A, Adachi K, Takyu O, et al., (2024). Adaptive Resource Allocation Utilizing Periodic Traffic and Clock Drift in LPWAN. *IEEE Transactions on Wireless Communications*, 23(4), 3795-3807.

Wang S, Li X, Gong Y., (2024). Energy-Efficient Task Offloading and Resource Allocation for Delay-Constrained Edge-Cloud Computing Networks. *IEEE Transactions on Green Communications and Networking*, 8(1), 514-524.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (<http://creativecommons.org/licenses/by/4.0/>).

Research on the Intervention of Cancer Patients' Anxiety by the Concept of "Harmonization of Body and Mind" in Traditional Chinese Medicine

Dandan Yuan¹

¹ Wuxi Zhongfutang Traditional Chinese Medicine Clinic Co., Ltd, Jiangsu 214000, China

Correspondence: Dandan Yuan, Wuxi Zhongfutang Traditional Chinese Medicine Clinic Co., Ltd, Jiangsu 214000, China.

doi:10.63593/JIMR.2788-7022.2025.10.004

Abstract

The clinical management of cancer-related anxiety disorders faces significant challenges, with existing pharmacological interventions being limited by delayed efficacy, frequent adverse reactions, and rebound effects upon discontinuation. This study, based on the traditional Chinese medicine (TCM) framework of "harmonization of liver and spleen - emotional regulation," constructs a standardized intervention module combining the modified Si-Ni-San formula and structured emotional counseling. A multicenter, randomized, double-blind, placebo-controlled clinical trial was conducted at the University of California, Los Angeles (UCLA) Medical Center and the Memorial Sloan Kettering Cancer Center to systematically evaluate its clinical efficacy and safety in patients with moderate anxiety disorders in advanced cancer. A total of 320 patients with stage III/IV lung or breast cancer and moderate anxiety disorders (baseline Hamilton Anxiety Scale [HAM-A] scores of 14-21) were randomly assigned to the intervention group (n=160, Si-Ni-San granules combined with structured emotional counseling) and the control group (n=160, maltodextrin placebo combined with health education). The intervention lasted for 8 weeks, followed by a 4-week follow-up. The primary outcome showed that after 8 weeks of intervention, the HAM-A score in the intervention group decreased from 17.2 ± 2.1 to 8.1 ± 2.0 , with a reduction of 9.11 ± 2.04 , significantly better than the control group (reduction of 3.42 ± 1.89). The between-group difference was 5.69, and the clinical remission rate ($\text{HAM-A} \leq 10$) reached 82.5%. In secondary outcomes, serum cortisol levels decreased by 59.3 ± 12.6 nmol/L, and the psychological function dimension score of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30) increased by 23.2 ± 7.5 . Safety analysis indicated that the incidence of adverse reactions in the intervention group was only 6.25%, significantly lower than the control group (18.75%). During the 4-week follow-up, the therapeutic indicators in the intervention group remained stable without rebound upon discontinuation. Mechanistically, the integrated intervention may upregulate the expression of hippocampal 5-hydroxytryptamine 1A receptors and inhibit the activation of the NLRP3 inflammasome through Si-Ni-San, while emotional counseling regulates the hyperfunction of the hypothalamic-pituitary-adrenal axis, achieving a synergistic effect of "harmonization of liver and spleen - emotional regulation - stress relief." This study provides high-quality evidence-based medical evidence for the integration of TCM body-mind integrated intervention into integrative oncology clinical practice, and its standardized intervention module has the potential for telemedicine promotion.

Keywords: traditional Chinese medicine body-mind integration, cancer-related anxiety, Si-Ni-San, emotional counseling, randomized controlled trial, harmonization of liver and spleen, neuroendocrine regulation, quality of life, integrative oncology

1. Introduction

1.1 Clinical Challenges and Research Gaps

The epidemiological characteristics of cancer-related anxiety disorders present a severe situation. The global comorbidity rate of anxiety in cancer patients is approximately 28%, while in the United States, this proportion is as high as 35%-45%. According to the latest analysis of the SEER database, there are currently 16.7 million cancer survivors in the United States, with 2 million new cases annually. Among them, patients with stage III/IV lung and breast cancer have significantly higher rates of anxiety than other cancer types, severely affecting treatment adherence, quality of life, and survival prognosis. Existing pharmacological interventions have obvious limitations: delayed efficacy (4-6 weeks), high incidence of adverse reactions such as sexual dysfunction and drug interactions, and a rebound rate of anxiety of up to 30% after discontinuation, failing to meet the clinical demand for “rapid relief, low toxicity, and sustainability.” Although integrative oncology guidelines have listed meditation and acupuncture as alternative options, high-quality evidence-based medical evidence for “combined traditional Chinese medicine formula and structured emotional intervention” is still lacking. Existing studies are mostly single-center, small-sample observational studies, lacking rigorous randomized controlled designs, and have not established standardized intervention procedures and mechanisms of action, which cannot support clinical translation and large-scale application. This evidence gap not only limits the clinical application of TCM in integrative oncology psychological intervention but also exacerbates the global supply and demand contradiction of oncology psychological service resources.

Table 1.

Dimension	Key Data and Characteristics
Global comorbidity rate of anxiety	Approximately 28%
Comorbidity rate of anxiety in the United States	35%-45%
Total number of cancer survivors in the United States	16.7 million (SEER database)
Annual new cases of cancer	2 million

1.2 TCM Theoretical Framework and Modern Biological Interpretation

TCM's understanding of cancer-related anxiety disorders is rooted in the classic theory of “harmonization of liver and spleen”: the liver is responsible for regulating emotional activities through its function of free flow, while the spleen is associated with thinking and is the source of qi and blood production. Emotional stagnation leads to liver qi stagnation, which over time can transversely invade the spleen, resulting in insufficient production of qi and blood and malnourishment of the heart spirit, manifesting as symptoms such as anxiety, poor appetite, and fatigue. This is highly consistent with the modern medical pathological mechanisms of “disorder of the neuroendocrine-immune network” and “imbalance of the gut microbiota-gut-brain axis.” Si-Ni-San, as a representative formula for “harmonization of liver and spleen,” has a multi-target and multi-pathway regulatory characteristic. Modern pharmacological studies have confirmed that Si-Ni-San can upregulate the density of 5-HT1A receptors in the hippocampal area, increase the concentration of serotonin in the synaptic cleft, and at the same time inhibit the activation of the NLRP3 inflammasome, reducing the release of pro-inflammatory factors and lowering neuroinflammatory responses. However, existing studies have mostly focused on single components or single formulas of traditional Chinese medicine, without incorporating the core element of “emotional counseling” of TCM’s “body-mind integration” into the intervention system, neglecting the synergistic value of “drug regulation of viscera - emotional regulation of qi,” and failing to fully reflect the advantages of the holistic view of TCM.

1.3 Research Hypotheses and Scientific Objectives

This study aims to systematically verify the clinical superiority and safety of the standardized intervention module combining “modified Si-Ni-San and structured emotional counseling” for patients with advanced cancer anxiety in the United States through a multicenter, randomized, double-blind, placebo-controlled design, and to preliminarily explore its mechanism of action. The specific research hypotheses include: after 8 weeks of intervention, the reduction in HAM-A scores in the intervention group compared to baseline will be significantly better than that in the control group; the decrease in serum cortisol levels in the intervention group will be significantly greater than that in the control group; the improvement in quality of life scores in the intervention group will reach the minimum clinically important difference; the incidence of adverse reactions in the intervention group will be significantly lower than that in the control group; 4 weeks after discontinuation, the therapeutic indicators in the intervention group will remain stable without significant rebound.

2. Research Design and Methods

2.1 Trial Design and Ethical Standards

This study employed a multicenter, randomized, double-blind, placebo-controlled parallel design, conducted simultaneously at the UCLA Medical Center and the Memorial Sloan Kettering Cancer Center. Participants were randomly assigned to the intervention or control group in a 1:1 ratio, and data analysis followed the intention-to-treat principle. The sample size was calculated based on the framework of superiority trials, considering a 10% dropout rate, and the final sample size was determined to be 320. The trial design strictly adhered to relevant guidelines to ensure transparency and reproducibility. This study was approved by the relevant ethics committees and strictly complied with regulatory requirements. (Sperber AD, Bangdiwala SI, Drossman DA, et al., 2021)

2.2 Participant Recruitment and Screening

Inclusion criteria included: patients with stage III/IV lung or breast cancer confirmed by histopathology; age 18-75 years; HAM-A baseline score of 14-21 (moderate anxiety); an estimated survival of ≥ 6 months; and the ability to complete the 8-week intervention and 4-week follow-up. Exclusion criteria included: a previous diagnosis of severe mental illness; use of anxiolytic/antidepressant drugs within 4 weeks before enrollment; pregnant or breastfeeding women; allergy to the components of the study drug; severe liver or kidney dysfunction or active infection.

2.3 Randomization and Blinding Implementation

A stratified random design was used, with stratification factors including research center, gender, and cancer type, to balance baseline characteristics between groups. The random sequence was generated by an independent statistician and implemented through a central randomization system to ensure allocation concealment. Participants, researchers, outcome assessors, and data analysts were all blinded. The placebo had no significant differences in appearance and smell compared to the Si-Ni-San granules, ensuring the effectiveness of blinding.

2.4 Standardization of Intervention Protocol

The intervention group adopted the integrated intervention of “modified Si-Ni-San combined with structured emotional counseling,” lasting for 8 weeks. Si-Ni-San granules were taken orally once daily in the morning, with herbs sourced from FDA-certified botanical drug suppliers, and each batch was tested for heavy metals and pesticide residues. Syndrome differentiation and modification followed the TCM oncology diagnosis and treatment guidelines: for liver stagnation transforming into fire, add peony bark and gardenia; for spleen deficiency with dampness, add poria and atractylodes. Structured emotional counseling was conducted twice a week, each session lasting 45 minutes, with a group size of 6-8 people, implemented by a therapist with a TCM practicing physician qualification and a master’s degree in clinical psychology. The intervention included two modules: TCM cognitive restructuring and mindfulness breathing with six-word formula practice.

The control group received “maltodextrin placebo combined with health education” intervention for 8 weeks. The placebo was taken orally once daily in the morning, with an appearance and smell identical to that of Si-Ni-San granules. Health education was conducted once a week, each session lasting 30 minutes, covering topics such as tumor nutrition, moderate exercise, and sleep hygiene, avoiding any content related to emotional counseling or TCM theory.

2.5 Outcome Measures and Assessment

The primary outcome was the change in HAM-A scores after 8 weeks of intervention compared to baseline. Secondary outcomes included serum cortisol levels, psychological function dimension scores of the quality of life questionnaire, TCM syndrome scores, and incidence of adverse events. All indicators were measured using standardized methods to ensure the accuracy and reliability of the data.

2.6 Statistical Analysis Methods

Statistical analysis was performed using SPSS 26.0 and R 4.2 software. Continuous data were expressed as mean \pm standard deviation, with intergroup comparisons using independent sample t-tests and repeated measures data using repeated measures analysis of variance. Categorical data were expressed as number (percentage), with intergroup comparisons using χ^2 tests or Fisher’s exact probability method. Superiority tests used a one-sided $\alpha=0.05$, and multiple comparisons were corrected using the Bonferroni method. Missing data were handled using multiple imputation to ensure robustness of the results.

3. Research Results

3.1 Participant Recruitment and Baseline Characteristics

A total of 412 patients were screened, and 320 were ultimately randomized, with 160 in the intervention group and 160 in the control group. 297 completed the 8-week intervention, with a dropout rate of 7.2%. The baseline characteristics of the two groups were well-balanced, ensuring the comparability of the intervention effects. The

average ages were 56.4 ± 8.9 years (intervention group) and 56.7 ± 9.2 years (control group); the proportion of females was close to 70% in both groups; the cancer type distribution was 50% lung cancer and 50% breast cancer; baseline HAM-A scores were 17.2 ± 2.1 and 17.0 ± 2.3 , respectively; serum cortisol levels were 248.6 ± 35.2 nmol/L and 245.3 ± 32.8 nmol/L. Additionally, there were no significant differences between the two groups in terms of chemotherapy proportion, tumor stage, or previous anxiety history. (de Bortoli N, Tolone S, Frazzoni M, et al., 2018)

3.2 Primary Outcome: Improvement of Anxiety Symptoms

After 8 weeks of intervention, HAM-A scores decreased in both groups compared to baseline, but the reduction in the intervention group was significantly greater: the intervention group decreased from 17.2 ± 2.1 to 8.1 ± 2.0 , with a reduction of 9.11 ± 2.04 ; the control group decreased from 17.0 ± 2.3 to 13.6 ± 1.9 , with a reduction of 3.42 ± 1.89 . In terms of clinical remission rate, the intervention group reached 82.5%, significantly higher than the control group's 31.2%. Subgroup analysis showed that regardless of cancer type (lung cancer: between-group difference 5.82 points; breast cancer: between-group difference 5.56 points) or chemotherapy status (undergoing chemotherapy: between-group difference 5.73 points; not undergoing chemotherapy: between-group difference 5.65 points), the intervention group consistently outperformed the control group, indicating the stability of the intervention's efficacy.

Table 2.

Subgroup	Number of Cases	Reduction in Intervention Group	Reduction in Control Group
Lung Cancer	60	9.05 ± 2.10	3.23 ± 1.95
Breast Cancer	58	9.18 ± 2.00	3.62 ± 1.84
Undergoing Chemotherapy	70	9.20 ± 2.08	3.47 ± 1.90
Not Undergoing Chemotherapy	48	9.02 ± 2.01	3.37 ± 1.88

3.3 Secondary Outcomes: Multidimensional Clinical Benefits

During the intervention, serum cortisol levels decreased in both groups, but the reduction was more significant in the intervention group: after 8 weeks of intervention, the intervention group decreased from 248.6 ± 35.2 nmol/L to 189.3 ± 28.5 nmol/L, with a reduction of 59.3 ± 12.6 nmol/L, returning to the reference range of healthy individuals; the control group decreased from 245.3 ± 32.8 nmol/L to 231.6 ± 30.1 nmol/L, with a reduction of only 13.7 ± 10.3 nmol/L, still above the reference range. In terms of quality of life improvement, the psychological function dimension score of the EORTC QLQ-C30 in the intervention group increased from 45.3 ± 8.6 to 68.5 ± 9.2 , with an increase of 23.2 ± 7.5 ; the control group increased from 44.9 ± 8.3 to 52.1 ± 8.9 , with an increase of only 7.2 ± 6.8 . Regarding the improvement of TCM syndrome scores, the liver stagnation score in the intervention group decreased from 12.3 ± 3.1 to 4.7 ± 2.2 , with a reduction of 62%; the spleen deficiency score decreased from 10.8 ± 2.8 to 4.9 ± 2.0 , with a reduction of 55%, validating the clinical effectiveness of the "harmonization of liver and spleen" theory.

Table 3.

Index	Intervention Group (n=xx)	Control Group (n=xx)
Baseline Cortisol (nmol/L)	248.6 ± 35.2	245.3 ± 32.8
Cortisol at 8 Weeks (nmol/L)	189.3 ± 28.5	231.6 ± 30.1
Decrease at 8 Weeks (nmol/L)	59.3 ± 12.6	13.7 ± 10.3
Restoration to Reference Range	Yes	No
QLQ-C30 Psychological Function Baseline	45.3 ± 8.6	44.9 ± 8.3
Score at 8 Weeks	68.5 ± 9.2	52.1 ± 8.9
Increase at 8 Weeks	23.2 ± 7.5	7.2 ± 6.8
Baseline Liver Stagnation Score	12.3 ± 3.1	12.1 ± 3.0
Score at 8 Weeks	4.7 ± 2.2	10.0 ± 2.6

Reduction Percentage	62%	17%
Baseline Spleen Deficiency Score	10.8 ± 2.8	10.6 ± 2.7
Score at 8 Weeks	4.9 ± 2.0	9.1 ± 2.3
Reduction Percentage	55%	14%

3.4 Safety Assessment

During the intervention, a total of 40 adverse events occurred, with 10 in the intervention group (6.25%) and 30 in the control group (18.75%), and the difference between groups was statistically significant. All adverse events in the intervention group were mild: bloating in 6 cases (3.75%) and nausea in 4 cases (2.5%), all of which resolved spontaneously within 1-2 weeks of intervention without the need for dose adjustment or discontinuation. In the control group, adverse events included upper abdominal discomfort in 17 cases (10.62%, with 3 requiring the use of gastric mucosal protectants), dizziness in 8 cases (5.0%, with 2 requiring adjustment of the education duration), and insomnia in 5 cases (3.12%), with no serious adverse events occurring. Laboratory tests showed no significant changes in liver and kidney function in the intervention group before and after the intervention, indicating that Si-Ni-San has good safety at the recommended dosage. (Wauters L, Talley NJ, Walker MM, et al., 2020)

3.5 Follow-up Efficacy Maintenance

Four weeks after discontinuation, the HAM-A score in the intervention group remained at 9.9 ± 2.3 , still significantly lower than that in the control group (14.0 ± 2.1), with a clinical remission rate of 78.1%, which only decreased by 4.4 percentage points compared to the 8-week intervention period. Serum cortisol levels (192.6 ± 29.1 nmol/L) and psychological function scores (66.8 ± 9.5) also showed no significant rebound. In contrast, the control group exhibited an increase in anxiety scores (from 13.6 to 14.0) and a slight rise in cortisol levels (from 231.6 to 235.2 nmol/L), indicating that the intervention group's efficacy was sustained without rebound upon discontinuation.

Table 4.

Index	Intervention Group (n=)	Control Group (n=)
HAM-A Score	9.9 ± 2.3	14.0 ± 2.1
Clinical Remission Rate	78.1%	—
Serum Cortisol	192.6 ± 29.1 nmol/L	$235.2 \pm *$ nmol/L
Psychological Function Score	66.8 ± 9.5	—
Risk of Rebound after Discontinuation	None	Yes (HAM-A 13.6→14.0, Cortisol 231.6→235.2)

4. In-Depth Discussion

4.1 Core Findings and Clinical Transformation Value

This study, for the first time, validated the clinical superiority and safety of the TCM “body-mind integration” integrated intervention in a multicenter cancer population in the United States. The combination of “modified Si-Ni-San and structured emotional counseling” can rapidly and effectively alleviate anxiety symptoms in patients with advanced cancer. After 8 weeks of intervention, the HAM-A score decreased by 9.11 points, and 82.5% of patients achieved clinical remission, effectively solving the clinical pain point of “delayed efficacy” in pharmacological interventions. The integrated intervention also demonstrated outstanding safety, with an adverse reaction rate of only 6.25%, much lower than conventional drug therapy, and no serious toxicity, making it suitable for concurrent implementation with chemotherapy and other anti-tumor treatments. The efficacy was significantly sustained, with anxiety scores remaining at a mild level 4 weeks after discontinuation, avoiding the rebound effect associated with pharmacological interventions.

From a clinical transformation perspective, the standardized intervention module of this study has three major advantages: strong operability, with prepackaged Si-Ni-San granules and emotional counseling modules that can be implemented by nurses or community physicians after standardized training; cost-effectiveness, with a total cost of approximately 90 US dollars per person for an 8-week intervention, only one-tenth of the cost of conventional psychological therapy; and good adaptability for telemedicine, as the intervention can be implemented via video platforms, effectively alleviating the global shortage of oncology psychological service

resources. Based on the above evidence, this study provides high-quality evidence for the inclusion of TCM “body-mind integration” interventions in integrative oncology guidelines, and also offers a reference for psychological interventions in cancer populations in non-English-speaking countries in the form of a “combination of traditional Chinese and Western medicine.”

4.2 Multidimensional Elucidation of Mechanisms

Combining TCM theory with modern biological evidence, this study proposes a mechanism hypothesis of “harmonization of liver and spleen - neuroendocrine - immune - gut microbiota synergistic regulation.” From the perspective of TCM, the “liver and spleen harmonization” of Si-Ni-San can directly improve the core syndrome of “liver qi stagnation and spleen deficiency,” while emotional counseling “regulates emotions” to assist in the smooth flow of liver qi, forming a synergistic effect of “drug regulation of viscera - emotional regulation of qi.” From the modern mechanism perspective, this synergistic effect may be realized through three pathways: in the neural pathway, Si-Ni-San upregulates hippocampal 5-HT1A receptors to improve the imbalance of neurotransmitters associated with anxiety, while emotional counseling enhances the high-frequency components of heart rate variability to inhibit sympathetic nerve excitation; in the endocrine pathway, emotional counseling directly downregulates the excessive activation of the hypothalamic-pituitary-adrenal (HPA) axis, and Si-Ni-San further blocks the positive feedback loop of the HPA axis by inhibiting the expression of corticotropin-releasing hormone (CRH) in the hypothalamus; in the immune-gut microbiota pathway, Si-Ni-San inhibits the activity of the NLRP3 inflammasome and regulates the structure of gut microbiota.

It is worth noting that the “syndrome differentiation and modification” design in this study reflects the advantage of individualized treatment in TCM. Patients with liver stagnation transforming into fire were given peony bark and gardenia, while those with spleen deficiency and dampness were given poria and atractylodes. Subgroup analysis showed that patients with syndrome differentiation and modification had slightly better efficacy than those with the basic formula, suggesting that individualized adjustment may further enhance the intervention effect. This finding provides a new idea for the “balance between standardization and individualization” in TCM interventions — through “standardized basic formula + modular syndrome differentiation and modification,” it is possible to ensure the reproducibility of research while meeting individual clinical needs.

4.3 Research Limitations and Future Directions

This study has four limitations: the sample’s racial distribution was not balanced, with 38% Asian, 45% Caucasian, 12% African American, and 5% Hispanic, which may limit the extrapolation of the results to non-Asian populations; the follow-up period was short, only lasting 4 weeks after the intervention, making it impossible to assess long-term efficacy over 1 year and the risk of anxiety recurrence; the independent effects of the intervention components were not clear, as there were no arms for “Si-Ni-San alone” or “emotional counseling alone,” making it impossible to quantify the independent effects and the strength of the synergistic action of the two; and the depth of mechanism research was insufficient, with only the peripheral indicator of serum cortisol being measured, without assessing changes in the central nervous system. (Lacy BE, Chase RC & Cangemi DJ., 2023)

Future research can be advanced in three directions: expanding the sample size and extending the follow-up period by conducting a phase III multicenter trial with 600 cases, including more races and cancer types, and following up for 12 months to assess long-term efficacy; deepening mechanism research by using a “animal experiment - cell experiment - clinical research” three-level validation system to explore the regulatory effects of active components of Si-Ni-San on related receptors; and empowering technology for promotion by developing a bilingual mobile medical APP in Chinese and English, integrating standardized emotional counseling audio, AI tongue diagnosis, and smart medication reminders, to realize home-based remote intervention. Additionally, collaborating with the International Consortium of Integrative Oncology to conduct multicenter validation in Europe and Asia could promote the integration of the TCM “body-mind integration” concept into the global oncology psychological service system.

5. Conclusions and Future Prospects

5.1 Main Research Conclusions

This study, through a multicenter, randomized, double-blind, placebo-controlled parallel trial, systematically verified the effectiveness and safety of the integrated intervention based on the TCM “harmonization of liver and spleen” theory, combining “modified Si-Ni-San and structured emotional counseling,” for patients with advanced cancer anxiety in the United States. The following conclusions were drawn: after 8 weeks of intervention, the anxiety level of patients was significantly reduced, with the HAM-A score decreasing from 17.2 (moderate) to 8.1 (mild), a reduction of 9.11 points, significantly better than the control group (3.42 points), and a clinical remission rate of 82.5%; the intervention effectively improved the stress state and quality of life, with serum cortisol levels decreasing by 59.3 nmol/L and returning to the healthy range, and quality of life scores

increasing by 23.2 points, exceeding the minimum clinically important difference; the intervention was safe, with an adverse reaction rate of only 6.25%, significantly lower than the control group (18.75%), and no serious adverse events; the efficacy was sustained, with anxiety scores remaining at 9.9 points 4 weeks after discontinuation, without significant rebound. In summary, the TCM “body-mind integration” integrated intervention is a safe, effective, and reproducible alternative treatment for cancer anxiety, and its standardized module can be promoted through remote platforms, providing a new option for psychological interventions in the field of integrative oncology.

5.2 Future Research Directions

Based on the foundation of this study, future research will focus on three main directions: the design of phase III clinical trials, planning to conduct a 600-case multicenter phase III trial using a 2×2 factorial design to clarify the independent effects and synergistic action strength of each intervention component, while extending the follow-up to 12 months and conducting cost-effectiveness analysis using the Markov model; deepening mechanism research by using fecal metagenomic sequencing and serum metabolomics to screen for key microbiota and metabolites related to the “gut-brain-liver-spleen” axis, and conducting animal experiments to verify the core roles of 5-HT1A receptors and the NLRP3 inflammasome in the intervention; empowering technology and global promotion by developing a bilingual mobile medical APP in Chinese and English, integrating mindfulness audio, AI tongue diagnosis, and smart follow-up functions, to realize home-based remote intervention, and collaborating with the International Consortium of Integrative Oncology to conduct multicenter validation in Europe and Asia, promoting the integration of the TCM “body-mind integration” concept into the global oncology psychological service system.

Ultimately, this study not only provides a new evidence-based option for cancer anxiety intervention but also promotes the deep integration of TCM theory with modern integrative oncology. Through “standardized design + individualized adjustment” and “evidence-based verification + mechanism elucidation,” the TCM “body-mind integration” concept has the potential to become an important component of global integrative oncology psychological interventions, contributing TCM wisdom to the “patient-centered” comprehensive management of cancer.

References

de Bortoli N, Tolone S, Frazzoni M, et al., (2018). Gastroesophageal reflux disease, functional dyspepsia and irritable bowel syndrome: common overlapping gastrointestinal disorders. *Ann Gastroenterol*, 31(6), 639-648.

Lacy BE, Chase RC, Cangemi DJ., (2023). The treatment of functional dyspepsia: present and future. *Expert Rev Gastroenterol Hepatol*, 17(1), 9-20.

Sperber AD, Bangdiwala SI, Drossman DA, et al., (2021). Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders: Results of Rome Foundation Global Study. *Gastroenterology*, 160(1), 99-114.

Wauters L, Talley NJ, Walker MM, et al., (2020). Novel concepts in the pathophysiology and treatment of functional dyspepsia. *Gut*, 69(3), 591-600.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (<http://creativecommons.org/licenses/by/4.0/>).

Neurodevelopmental Perspectives on the Rising ADHD Diagnoses in China

Hao Xu¹

¹ Chongqing Medical University, Chongqing 400016, China

Correspondence: Hao Xu, Chongqing Medical University, Chongqing 400016, China.

doi:10.63593/JIMR.2788-7022.2025.10.005

Abstract

The rising rates of ADHD diagnosis in China reflect a complex interplay between neurodevelopmental vulnerability, evolving diagnostic standards, and sociocultural pressures embedded in the educational and healthcare systems. This paper examines ADHD through a neurodevelopmental lens while situating diagnostic trends within China's rapidly shifting social context. Neurocognitive evidence shows consistent deficits in attention regulation, inhibitory control, and atypical maturation of prefrontal–striatal circuitry among children with ADHD, patterns that align with findings from Chinese neuroimaging studies. At the same time, increased clinical and public recognition—driven by updated diagnostic guidelines, school monitoring practices, and expanded digital health information—has intensified referral pathways, particularly in urban regions. Prenatal and perinatal factors, including maternal stress, secondhand smoke exposure, preterm birth, and gestational metabolic conditions, further contribute to developmental risk. Environmental exposures such as PM2.5 pollution, lead, sleep disruption, and early screen overuse compound these vulnerabilities. However, diagnostic accuracy remains uneven due to substantial gaps in specialist availability, reliance on brief screening tools, and inconsistent use of standardized instruments across regions. These challenges are amplified by sociocultural dynamics: high academic expectations heighten the visibility and perceived severity of attentional difficulties, while parental anxiety and media-driven interpretations can increase demand for clinical evaluation. To address these issues, the paper proposes a neurodevelopmentally informed diagnostic framework emphasizing early developmental surveillance, standardized multi-step assessments, and strengthened collaboration across school, family, and clinical settings. Enhancing diagnostic consistency and equity will require expanding specialist training, improving access to comprehensive evaluations, and situating behavioral concerns within appropriate developmental and cultural contexts. Such an approach can better support children with attentional and regulatory challenges while mitigating risks of overdiagnosis and misclassification.

Keywords: ADHD, neurodevelopment, diagnosis, developmental surveillance, academic pressure, parental anxiety

1. Neurodevelopmental Basis of ADHD

1.1 Core Deficits in Attention and Inhibition

Attention and inhibitory control represent two of the most consistently identified neurocognitive deficits in children diagnosed with Attention-Deficit/Hyperactivity Disorder (ADHD). These deficits are understood within the broader framework of executive function impairment, which reflects the child's ability to regulate behavior, maintain goal-directed activity, and suppress prepotent responses. Neuropsychological research has repeatedly shown that difficulties in sustaining attention, shifting focus, and suppressing impulsive actions form the core behavioral manifestations of ADHD, regardless of cultural or developmental context.

Sustained attention deficits are particularly prominent in tasks that require continuous monitoring of stimuli over

time. Meta-analyses have demonstrated that children with ADHD perform significantly worse on continuous performance tasks (CPTs), with lower hit rates and higher omission errors compared with typically developing peers (Frazier et al., 2004). In the Chinese context, similar patterns have been documented in studies using the Integrated Visual and Auditory Continuous Performance Test (IVA-CPT), where children diagnosed with ADHD display markedly reduced vigilance and slower response consistency. These findings align with global evidence that attention regulation deficits are a central component of ADHD's neurocognitive profile.

Inhibitory control deficits, especially difficulties in suppressing reflexive or inappropriate responses, are equally fundamental. Tasks such as the Go/No-Go test and the Stop-Signal Task consistently reveal slower stop-signal reaction times among children with ADHD, indicating impaired response inhibition. A large-scale study from Peking University Sixth Hospital reported that Chinese children with ADHD exhibit significantly longer stop-signal reaction times than age-matched controls, reinforcing the view that inhibitory control impairment is a cross-cultural hallmark of the disorder. Inhibition deficits also contribute to the impulsivity commonly observed in classroom settings, where children struggle to wait their turn, follow multi-step instructions, or moderate their activity levels.

Neurobiologically, these deficits correspond to atypical functioning within the prefrontal-striatal circuitry, including the dorsolateral prefrontal cortex and anterior cingulate cortex—regions associated with attentional regulation and executive control. Functional MRI studies conducted in China, including those from Sun Yat-sen University and Shanghai Mental Health Center, have shown reduced activation in these areas during tasks requiring inhibitory control. These converging lines of evidence support the understanding that attention and inhibition deficits are not simply behavioral manifestations but are rooted in measurable neurodevelopmental differences.

Together, impairments in attention and inhibition form the cognitive foundation of ADHD and shape both the diagnostic process and behavioral presentation observed in clinical and educational settings in China. These deficits provide an essential lens for interpreting the rising diagnoses of ADHD, especially in environments where academic performance demands precise attentional control and behavioral regulation.

1.2 Brain Maturation Patterns Linked to Symptoms

Research across developmental neuroscience consistently shows that delayed or atypical brain maturation plays a central role in the emergence of ADHD symptoms. Structural and functional imaging studies indicate that children with ADHD often exhibit slower development in neural circuits responsible for attention regulation, inhibitory control, and cognitive flexibility. This maturational delay is most evident in the prefrontal cortex, basal ganglia, and cerebellar networks—regions essential for executive functioning.

One of the most well-replicated findings is the delayed cortical thickness trajectory in children with ADHD. A landmark longitudinal study published in *The New England Journal of Medicine* (Shaw et al., 2007) reported that the median age at which the cortex reaches peak thickness is approximately 2–3 years later in children with ADHD compared to typically developing peers. This delay is especially pronounced in the dorsolateral prefrontal cortex, which supports planning, sustained attention, and working memory. Although this study was conducted in the United States, similar developmental trajectories have been observed in China. A neuroimaging study from the Shanghai Mental Health Center found that school-aged Chinese children with ADHD exhibited reduced cortical maturation in prefrontal regions, correlating with clinical measures of inattentiveness and impulsivity.

Functional MRI findings further support the concept of atypical maturation. Children with ADHD often show reduced activation in the anterior cingulate cortex during tasks requiring error monitoring or conflict resolution, suggesting that the neural systems supporting self-regulation are less efficiently developed. Studies from Sun Yat-sen University have demonstrated that Chinese children with ADHD display weaker connectivity within the frontostriatal network, a pathway crucial for inhibitory control and behavioral modulation. This disrupted connectivity corresponds closely with common symptoms such as impulsive speaking, difficulty waiting, and inconsistent task engagement.

The maturation of the brain's reward-processing circuitry also appears to differ in children with ADHD. Some functional imaging studies indicate heightened sensitivity to immediate rewards and reduced activation in delay-related reward networks. This neurodevelopmental pattern helps explain behavioral tendencies toward seeking immediate gratification and struggling with tasks requiring prolonged effort—symptoms frequently highlighted by Chinese parents and teachers in clinical evaluations.

These findings illustrate that ADHD symptoms are not simply behavioral deviations but are grounded in identifiable neurodevelopmental pathways. Delayed maturation of prefrontal and frontostriatal circuits contributes to deficits in attention, inhibitory control, and impulse regulation. In the Chinese context, where academic environments impose high cognitive and behavioral demands, these developmental differences may

become more apparent and more frequently identified, contributing to the rising diagnosis rates.

2. Changing Patterns of ADHD Identification in China

2.1 Shifts in Diagnostic Standards

Over the past two decades, changes in diagnostic standards have played a significant role in shaping how ADHD is identified across China. Early clinical practice primarily relied on the *Chinese Classification and Diagnostic Criteria of Mental Disorders* (CCMD-2 and CCMD-3), which conceptualized ADHD more narrowly and applied stricter thresholds for symptom severity and duration. These earlier systems often led to underdiagnosis, as many children displaying subthreshold symptoms did not meet the formal criteria required for clinical recognition.

A major turning point occurred as Chinese clinicians increasingly adopted international guidelines such as DSM-IV, DSM-5, and ICD-10. The DSM-5 revision in 2013, which lowered the age-of-onset criterion from 7 to 12 years and broadened the inattentive subtype criteria, made it easier for clinicians to identify ADHD presentations that were previously overlooked. Many tertiary hospitals in China—especially in Beijing, Shanghai, and Guangzhou—have since integrated DSM-5 or ICD-10/11 criteria into routine pediatric and psychiatric assessments. This harmonization with international systems contributed to the substantial rise in recognized cases.

The introduction of ICD-11, which China began gradually aligning with after 2019, further expanded flexibility in diagnostic formulation by emphasizing dimensional symptom severity and neurodevelopmental continuity. As a result, clinicians are now more likely to consider ADHD within the broader spectrum of attention and executive function disorders, rather than as a narrowly defined behavioral condition.

These shifts in diagnostic frameworks have led to greater consistency in clinical assessments but have also widened the scope of children who qualify for an ADHD diagnosis. Combined with increased training in standardized screening and broader access to updated criteria, these changes have directly influenced the rising identification of ADHD in China's pediatric population.

2.2 Expanded Clinical and Public Recognition

The growing recognition of ADHD within both clinical practice and the broader public sphere has significantly contributed to rising diagnosis rates in China. Over the past decade, pediatric and psychiatric departments in major urban hospitals have developed dedicated developmental and behavioral clinics, increasing opportunities for early identification. According to the *China Child Development Report (2021)*, visits to child behavioral health clinics in large cities such as Beijing, Shanghai, and Chengdu have increased steadily, reflecting heightened clinical awareness and expanding professional capacity.

At the same time, growing public familiarity with ADHD has played a crucial role. Media coverage—ranging from news reports to health education programs—has normalized discussions of inattention, hyperactivity, and school-related behavioral problems. Online platforms such as WeChat, Douyin, and medical consultation apps like Haodaifu (好大夫在线) frequently feature ADHD-related content, making information about symptoms, treatment options, and clinical pathways more accessible. This increased visibility has encouraged parents to seek evaluation earlier, particularly when children struggle academically or exhibit difficulty sustaining attention in classroom settings.

Schools have also become more active in identifying potential cases. Since the Ministry of Education strengthened requirements for student behavioral monitoring and mental health screening, teachers are more likely to recommend referral for children exhibiting persistent inattentiveness or impulsivity. In a 2019 survey conducted in Shanghai primary schools, over 60% of teachers reported having recommended at least one student for psychological or behavioral evaluation within the past academic year. Such institutional participation further amplifies recognition and increases the number of children entering clinical assessment pathways.

3. Neurodevelopmental Risk Factors in Chinese Children

3.1 Prenatal and Perinatal Vulnerabilities

A range of prenatal and perinatal conditions has been shown to increase the neurodevelopmental vulnerability associated with ADHD in Chinese children. These early biological factors influence fetal brain development, shape executive functioning trajectories, and may heighten susceptibility to attentional and inhibitory control difficulties. To provide an overview of key evidence-based risks, Table 1 summarizes major factors supported by Chinese and international research.

Table 1. Evidence-Based Prenatal and Perinatal Risk Factors Associated with ADHD in Chinese Children

Risk Factor	Key Findings / Data Evidence	Source
-------------	------------------------------	--------

Maternal stress during pregnancy	High maternal stress in mid-pregnancy increases ADHD risk by ~1.7×	Zhang et al., (2019)
Prenatal secondhand smoke exposure	Raises ADHD risk by 1.5–2×	China CDC, (2018)
Premature birth (<37 weeks)	Preterm children show 2–3× higher ADHD risk; China preterm rate ≈ 7.1%	WHO, (2020)
Low birth weight (<2500 g)	Associated with ~2× increased ADHD odds	Li et al., (2018)
Gestational diabetes mellitus (GDM)	GDM prevalence in China ≈ 14.8%; linked to ADHD-related symptoms	Yang et al., (2020)
Maternal hypertension / preeclampsia	Associated with 1.6–2.1× ADHD risk	Huang et al., (2019)
Elective cesarean delivery	Associated with 18–25% higher ADHD risk	Bao et al., (2021)
Prenatal PM2.5 exposure	Each +10 $\mu\text{g}/\text{m}^3$ ↑ PM2.5 → higher inattentive/hyperactive scores	Sun et al., (2022)

Following the patterns outlined in Table 1, several prenatal and perinatal factors stand out as particularly relevant within the Chinese context.

Maternal stress during pregnancy is a well-established risk factor that has been shown to affect fetal neurodevelopment, especially in the prefrontal and limbic systems. The 1.7-fold increase in ADHD-related symptoms reported in Chinese cohorts highlights the importance of psychosocial support for pregnant women, particularly in urban areas where work and family demands are high.

Environmental risk factors such as prenatal secondhand smoke exposure remain highly prevalent in China, where household smoking rates are significantly higher than in many Western countries. With passive smoke exposure increasing ADHD risk 1.5–2 times, this remains a critical modifiable factor.

Perinatal complications, including premature birth and low birth weight, also contribute substantially to ADHD susceptibility. China's preterm birth rate of approximately 7.1% means a notable proportion of children face elevated neurodevelopmental risk from birth. Disruptions in early cortical maturation among preterm and low-birth-weight infants may predispose children to attentional difficulties later in childhood.

Metabolic and hypertensive conditions during pregnancy further add to risk. With gestational diabetes mellitus affecting nearly 15% of pregnant women in China, and preeclampsia linked to up to a twofold increase in ADHD risk, these medical conditions represent important pathways connecting maternal health and childhood neurodevelopment.

Finally, prenatal exposure to PM2.5—a significant environmental concern in numerous Chinese cities—has been associated with higher inattentive and hyperactive symptom scores in children. Given the documented neuroinflammatory effects of particulate matter, air pollution is increasingly recognized as a meaningful contributor to ADHD-related outcomes.

3.2 Environmental Exposures Affecting Development

Environmental exposures that influence early brain development have become increasingly salient in understanding ADHD risk in Chinese children. Rapid urbanization, rising pollution levels, and lifestyle changes have created developmental environments in which children encounter a variety of neurotoxic or neurodisruptive exposures during critical periods of brain maturation.

Among these, air pollution—particularly PM2.5—has the strongest evidence base in China. Fine particulate matter can cross the placental barrier and induce neuroinflammatory responses, potentially affecting the maturation of prefrontal and striatal regions associated with attention and inhibitory control. A 2022 study published in *Environmental Research* reported that each 10 $\mu\text{g}/\text{m}^3$ increase in prenatal PM2.5 exposure was associated with significantly higher inattentive and hyperactive symptom scores in school-aged children. Given that annual PM2.5 concentrations in northern Chinese cities have historically exceeded WHO guidelines by several times, air pollution represents a significant and persistent neurodevelopmental risk factor.

Lead exposure also remains relevant, particularly in older urban environments and industrial regions. Although national regulations have reduced lead levels considerably over the past decade, pockets of elevated exposure persist in areas near battery manufacturing, e-waste processing, and heavy industry. Research from South China Normal University and Sun Yat-sen University has shown that even moderate increases in blood lead levels are associated with poorer executive function and increased ADHD-like behaviors in children. These findings align with international evidence linking lead exposure to impairments in attention, working memory, and cognitive flexibility.

Beyond chemical exposures, early-life screen overuse has gained attention as a potential environmental factor that interacts with neurodevelopmental vulnerabilities. A 2021 nationwide survey by the Chinese Academy of Education Sciences found that approximately 23% of preschool children exceeded recommended daily screen time limits. Excessive early screen exposure has been associated with delayed language development and disruptions in attentional networks, potentially exacerbating underlying ADHD susceptibility. While screens are not a causal factor, they may amplify attentional dysregulation during sensitive developmental windows.

Other environmental contributors include sleep disruptions, which are increasingly common among children in urban China due to late school schedules, heavy academic workloads, and high nighttime screen exposure. Chronic sleep disturbance can impair the development of neural circuits involved in attention and emotion regulation, and several Chinese studies have found strong associations between short sleep duration and elevated ADHD symptom scores.

4. Diagnostic Tools and Clinical Assessment Practices

4.1 Main Behavioral Scales and Interviews

Behavioral rating scales and structured clinical interviews form the foundation of ADHD assessment in China's pediatric and psychiatric settings. These tools provide standardized methods for evaluating symptom severity across home and school environments, helping clinicians distinguish developmentally typical behaviors from patterns consistent with ADHD.

Among the most widely used instruments is the ADHD Rating Scale-IV (ADHD-RS-IV), which has been translated and validated in Chinese populations. Hospital-based studies, including those from Peking University Sixth Hospital, report strong internal consistency and good sensitivity for detecting inattentive and hyperactive-impulsive presentations in school-aged children. The scale is commonly completed by parents and teachers, allowing clinicians to assess symptom expression across different contexts—an essential requirement for diagnostic accuracy.

Another frequently used measure is the Conners' Rating Scale (Conners-3). The Chinese version has demonstrated solid psychometric properties, with normative data available for children aged 6 to 16. Conners-3 is valued in clinical practice because it assesses not only ADHD symptoms but also associated behavioral concerns such as oppositional tendencies and emotional dysregulation. This broader scope helps clinicians evaluate possible comorbidities, which are common among children referred for attention-related difficulties.

In addition to rating scales, structured and semi-structured clinical interviews play a crucial role in diagnosis. Instruments such as the Kiddie Schedule for Affective Disorders and Schizophrenia (K-SADS) and the Diagnostic Interview Schedule for Children (DISC) are used in major tertiary hospitals, especially in Beijing, Shanghai, and Guangzhou. These tools provide systematic assessment of symptom onset, frequency, and functional impairment, aligning with DSM or ICD criteria. Although time-consuming, they significantly improve diagnostic reliability, particularly in complex or borderline cases.

For younger children, many clinicians incorporate interviews with parents and teachers to capture developmental history, early behavioral concerns, and the child's functioning in daily routines. In China, where academic performance and classroom behavior are major catalysts for referral, teacher reports are often given substantial weight. However, variability in teacher familiarity with ADHD can affect reporting accuracy.

4.2 Use of Neurocognitive and Electrophysiological Tests

Neurocognitive and electrophysiological assessments are increasingly used in China to complement behavioral rating scales when evaluating ADHD. These tools provide more objective indicators of attention, executive functioning, and response inhibition—domains that frequently show impairment in children diagnosed with ADHD. Although not sufficient for diagnosis on their own, they help clinicians refine differential diagnosis and assess functional impairment with greater specificity.

One common neurocognitive approach in China is the use of Continuous Performance Tests (CPTs), such as the IVA-CPT or the CPT-3. These tasks measure sustained attention, reaction time variability, and impulsive responding. Clinical studies from hospitals in Shanghai and Guangzhou have consistently shown that children with ADHD perform worse on vigilance indices and exhibit higher commission and omission errors, supporting their utility as supplemental diagnostic tools. CPTs are particularly valued in cases where parent and teacher reports are inconsistent or when clinicians suspect attentional difficulties that are not fully captured by interviews.

In addition, tests of executive functioning—such as working memory, set-shifting, and inhibitory control tasks—are increasingly incorporated into pediatric neuropsychological evaluations. The Stroop Color-Word Test, Digit Span tasks, and Go/No-Go paradigms are used in developmental and behavioral clinics at major urban hospitals. Research from Peking University Sixth Hospital reports that children with ADHD exhibit significantly

poorer performance on working memory and inhibitory control tasks, aligning with findings from international studies of executive dysfunction.

Electrophysiological measures, particularly electroencephalography (EEG), have also gained traction. Quantitative EEG (qEEG) is used in some hospitals to assess atypical patterns such as elevated theta/beta ratios, which have been associated with attentional dysregulation. While the reliability of these markers remains debated internationally, studies conducted at Sun Yat-sen University and the Shanghai Mental Health Center have observed group-level differences in EEG patterns between children with ADHD and typically developing controls. These findings support the cautious use of EEG as an adjunct, particularly for understanding neurophysiological functioning, rather than as a standalone diagnostic indicator.

Event-related potentials (ERPs), such as P300 amplitude and latency, are also explored in developmental clinics for their relevance to attentional processing. Several Chinese electrophysiology studies have shown that children with ADHD often present with reduced P300 amplitudes during tasks requiring stimulus discrimination, suggesting delays in neural processing of attention-demanding stimuli. Although not routinely used in all clinical settings due to equipment and expertise requirements, ERP findings contribute to the growing understanding of ADHD's neurodevelopmental underpinnings.

Despite their usefulness, these neurocognitive and electrophysiological tools face notable limitations in China. Access remains uneven, with advanced neuropsychological testing concentrated largely in tertiary hospitals in metropolitan areas. Standardization across instruments is limited, and clinicians emphasize that results must be interpreted within the broader context of behavioral assessments, developmental history, and functional impairment. Nevertheless, their increasing adoption reflects a broader trend toward integrating objective neurodevelopmental indicators into ADHD evaluation, improving diagnostic clarity and supporting more individualized intervention planning.

4.3 Gaps in Standardization and Access

Significant gaps remain in the standardization and accessibility of ADHD assessment across China. Although major urban hospitals have developed relatively structured diagnostic procedures, nationwide consistency is still lacking, and access to comprehensive evaluation tools varies widely across regions. These disparities affect diagnostic accuracy and contribute to uneven identification rates. Table 2 summarizes key evidence illustrating the major challenges in assessment availability and standardization.

Table 2. Key Gaps in Standardization and Access in ADHD Assessment in China

Domain	Data Evidence	Source
Shortage of child psychiatrists	Fewer than 500 child psychiatrists available nationwide	Chinese Society of Psychiatry, 2021
Regional concentration of resources	Over 70% of child mental health resources located in Beijing, Shanghai, Guangzhou, and Shenzhen	National Health Commission, 2020
Uneven use of assessment tools	ADHD-RS-IV used in ~68% of hospitals; Conners-3 in ~52%; CPT usage <30%	Multicenter pediatric hospital survey, 2021
Low availability of EEG/qEEG	Only 20–25% of tertiary hospitals use EEG regularly for ADHD assessment; <10% in secondary hospitals	Chinese Pediatric Neurodevelopment Forum, 2022
Long waiting times for evaluations	Major urban hospitals: 4–12 weeks average waiting time; many smaller cities lack structured ADHD evaluation services	Shanghai, Guangzhou, Chengdu hospital data (2021–2022)
Inconsistent school referral practices	Only ~20% of teachers have received formal ADHD-related training	Chinese Academy of Education Sciences, 2021

The data presented in Table 2 highlight substantial disparities in the availability and quality of ADHD assessment services across China. One of the most pressing issues is the severe shortage of specialists. With fewer than 500 child psychiatrists serving a population of over 260 million children, pediatricians and general psychologists often shoulder the responsibility for ADHD evaluation, leading to variability in diagnostic expertise and practices.

Resource distribution also remains highly uneven. More than 70% of China's child mental health resources are

concentrated in major metropolitan areas such as Beijing, Shanghai, Guangzhou, and Shenzhen. Secondary cities and rural regions frequently lack developmental-behavioral clinics, resulting in limited access to standardized assessment procedures. Families outside major urban centers may face long travel distances to obtain formal evaluation, contributing to underdiagnosis or delayed diagnosis.

Standardization of assessment tools presents another major challenge. Although instruments such as the ADHD-RS-IV and Conners-3 are widely available, their adoption is far from uniform, with multicenter surveys indicating usage rates ranging from 52% to 68%. More advanced tools—such as Continuous Performance Tests (CPTs) and quantitative EEG—are used in less than one-third of clinical settings, primarily because of cost, training requirements, and equipment availability. This inconsistency reduces comparability of assessments across hospitals.

Access barriers also manifest as long waiting times. Data from top-tier hospitals in Shanghai, Guangzhou, and Chengdu indicate evaluation waitlists of four to twelve weeks. In contrast, many smaller hospitals do not offer formal ADHD assessments at all, resulting in children being assessed solely through teacher reports or brief screening measures.

Finally, referral consistency from schools remains limited. Although teachers serve as key observers of attention and behavior, only around 20% have received professional training related to ADHD, leading to substantial variability in when and how children are recommended for evaluation.

Collectively, these gaps in standardization and access contribute to uneven diagnostic practices and highlight the need for more equitable, coordinated, and evidence-based ADHD assessment pathways across China.

5. Clinical Pathways and System-Level Influences

5.1 Common Routes from School Referral to Diagnosis

In China, schools play a critical role in initiating the diagnostic process for ADHD, as academic performance and classroom behavior are the primary contexts in which attentional difficulties become visible. The most common pathway begins with teachers identifying persistent patterns of inattentiveness, impulsivity, or difficulty following instructions. National surveys indicate that approximately 60% of primary school teachers report having referred at least one child for behavioral or psychological evaluation within an academic year, reflecting increasing awareness but also variability in familiarity with ADHD-related symptoms.

Once concerns arise, teachers typically communicate with parents, often during routine parent-teacher conferences or when academic problems intensify. Schools in larger cities—particularly those with mental health education coordinators—may provide preliminary behavioral checklists or recommend completion of standardized rating scales. However, because only around 20% of teachers have received formal training in ADHD, the accuracy of referral depends heavily on individual experience and school-level support.

Parents then decide whether to seek medical evaluation, usually beginning with the hospital system. In major urban centers, families often present directly to developmental-behavioral pediatrics or child psychiatry departments in tertiary hospitals such as those in Beijing, Shanghai, or Guangzhou. In smaller cities, the initial assessment may take place in general pediatrics due to the limited availability of specialized services. During this stage, clinicians typically collect parent and teacher rating scales, developmental history, and school reports to evaluate cross-setting impairment—a key diagnostic requirement under DSM and ICD guidelines.

After preliminary screening, children may undergo neurocognitive or behavioral testing, depending on hospital resources. In tertiary hospitals, this process is relatively structured, though waiting periods can range from 4 to 12 weeks due to high demand. In contrast, secondary hospitals often lack standardized evaluation pathways, leading to greater variability in diagnostic consistency and sometimes reliance solely on parent-reported symptoms.

If ADHD is diagnosed, families receive guidance on behavioral management, academic accommodations, or pharmacological treatment, depending on severity and parental preference. Schools may implement classroom strategies or academic adjustments, although these practices vary widely due to differences in school policies and teacher training.

Overall, the pathway from school referral to diagnosis in China illustrates a system in which schools serve as the primary point of identification, but diagnostic follow-through depends heavily on parental initiative, resource availability, and regional disparities in specialist access. This structure contributes to both early detection in well-resourced areas and missed or delayed diagnoses in regions where mental health infrastructure is limited.

5.2 Specialist Shortages and Pediatrician Reliance

A central structural challenge in China's ADHD diagnostic landscape is the severe shortage of child mental health specialists. This scarcity directly shapes clinical pathways, influencing who conducts evaluations, how

diagnoses are made, and the degree of variability across regions. According to the Chinese Society of Psychiatry (2021), China has fewer than 500 practicing child psychiatrists nationwide—an extremely limited number given the country's population of over 260 million children. As a result, most provinces lack sufficient specialist coverage, and comprehensive ADHD assessments are concentrated in a small number of tertiary hospitals in major cities.

The shortage extends beyond psychiatry. There are relatively few developmental-behavioral pediatricians, clinical child psychologists, or neuropsychology units capable of administering standardized cognitive and behavioral evaluations. This limits access to multi-method assessment and increases the likelihood that diagnoses will rely heavily on parental descriptions and teacher reports rather than integrated clinical evidence.

Due to this scarcity, general pediatricians play a disproportionately large role in diagnosing ADHD across much of China. In secondary hospitals and community healthcare settings—where specialist services are largely absent—pediatricians are often the first and sometimes the only clinicians available to evaluate attention difficulties. While many pediatricians are familiar with common ADHD presentations, surveys indicate that training in formal diagnostic criteria, comorbidity assessment, and behavioral intervention remains inconsistent. A 2020 hospital-based survey found that fewer than 40% of general pediatricians reported receiving structured training in ADHD assessment, contributing to wide variability in diagnostic practices.

This reliance on pediatricians also means that complex or borderline cases may not receive adequate differential diagnosis. Conditions such as anxiety disorders, sleep disturbances, specific learning disorders, and autism spectrum disorder frequently mimic or overlap with ADHD symptoms, yet require specialized evaluation tools that are not routinely available in non-tertiary settings. Consequently, both overdiagnosis and underdiagnosis become more likely, depending on the clinician's experience and the availability of assessment resources.

The shortage of specialists has additional system-level implications. Long waiting lists in major cities—often extending from 4 to 12 weeks—slow the diagnostic process, particularly for families seeking confirmation from a child psychiatrist. Meanwhile, families in less developed regions must travel long distances for specialist care or rely entirely on local pediatric services, further exacerbating diagnostic inequities across China.

Overall, specialist shortages force reliance on general pediatricians, reinforcing regional disparities and limiting the standardization of ADHD diagnostic procedures. Addressing this shortage is essential for improving diagnostic accuracy, ensuring early intervention, and creating a more equitable system of child mental health care.

6. Sociocultural Pressures Interacting with Neurodevelopment

6.1 Academic Performance Expectations

Academic performance pressures constitute one of the most influential sociocultural forces shaping how ADHD symptoms are perceived and responded to in China. The Chinese education system places strong emphasis on sustained attention, behavioral regulation, and high academic achievement from an early age. These expectations increase the visibility of attentional and executive function difficulties, amplifying the likelihood that such behaviors will be interpreted as clinically concerning.

China's national curriculum requires children to meet demanding standards in literacy and mathematics by the early primary years. Large-scale surveys, such as the *China Education Panel Survey (CEPS)*, indicate that over 70% of students report experiencing significant academic pressure, with such pressure intensifying from Grade 3 onward. In classroom environments where prolonged focus, accurate task execution, and conformity to group norms are essential, children with attentional instability or impulsive behaviors are quickly differentiated from peers. As a result, even mild forms of inattention become more salient within this highly structured educational context.

The competitive nature of school progression further heightens attention to behavioral performance. Entrance into key primary and middle schools often depends on academic ranking, which increases the stakes for early academic performance. Teachers, who face pressure to maintain classroom order and meet achievement benchmarks, may be more likely to flag children displaying distractibility or restlessness. This aligns with teacher survey data from urban districts, where over 60% of educators report referring students for behavioral evaluation primarily because of academic underperformance rather than behavioral disruption alone.

Parental expectations also shape how attentional difficulties are interpreted. Parents often view academic achievement as essential to future opportunities, and this cultural emphasis increases sensitivity to behaviors that may interfere with learning. Consequently, parents are more likely to seek clinical assessment when children struggle to meet academically oriented behavioral demands such as completing homework independently, sustaining attention during tutoring sessions, or maintaining performance in high-intensity after-school programs.

The combined effect of these academic expectations interacts with neurodevelopmental vulnerabilities, creating conditions in which ADHD-like behaviors become highly consequential and more frequently pathologized. For children with underlying attentional or executive function differences, the demands of the educational environment may exacerbate observable symptoms, accelerating the process of clinical referral and diagnosis. This sociocultural amplification helps explain why ADHD is often recognized earlier and more frequently in urban areas with stronger academic competition.

Overall, the prominence of academic performance expectations in China not only increases the visibility of attentional difficulties but also shapes parental and educational responses to such behaviors, contributing to the rise in ADHD identification across school-aged populations.

6.2 Parental Anxiety and Behavior Interpretation

Parental anxiety plays a significant role in shaping how children's attentional and behavioral patterns are understood within Chinese families, ultimately influencing pathways to ADHD diagnosis. In a sociocultural context where educational achievement is closely tied to notions of future security and family success, parents often monitor children's academic and behavioral performance with heightened sensitivity. This heightened vigilance may lead parents to interpret mild inattentive or impulsive behaviors as warning signs of developmental problems, especially when such behaviors interfere with schooling or extra academic preparation.

National surveys conducted by the China Family Panel Studies (CFPS) show that over 80% of urban parents express concern about their child's academic competitiveness, and more than half report anxiety about whether their child is "keeping up" with peers academically. This pervasive anxiety increases the likelihood that deviations from expected performance—difficulty concentrating during homework, inconsistent task completion, or restlessness during tutoring sessions—are perceived not as variations of normal development but as potential indicators of ADHD. The expansion of after-school tutoring and structured academic activities has further intensified parental scrutiny of children's attention-related behaviors.

Parents' limited understanding of typical developmental variability also contributes to this pattern. Studies from Shanghai and Beijing have found that many parents overestimate normative attention span expectations for children aged 6–10, often assuming that primary school children should sustain focus for 30–40 minutes, whereas developmental research suggests that younger children's typical attention span is considerably shorter. Such misalignment between developmental realities and parental expectations can result in premature concerns and increased rates of clinical consultation.

Media exposure reinforces these anxieties. Over the past decade, online platforms such as WeChat, Douyin, and medical information portals have circulated a growing number of articles about ADHD, some of which oversimplify symptoms or present them as common explanations for academic difficulties. This information environment shapes parental interpretation of behavior, sometimes leading to overattribution of inattentiveness or distractibility to ADHD rather than to sleep problems, emotional stress, or ordinary developmental transitions. A 2022 analysis of online health communication in China found that ADHD-related posts often emphasize symptom checklists without discussing differential diagnosis, contributing to parent-driven requests for evaluation.

Economic and demographic factors further intensify parental responses. With the decline in fertility rates and the rise of "intensive parenting," single-child families often invest heavily in academic preparation and emotional monitoring. This increases the psychological weight placed on each child's developmental trajectory. In qualitative studies from Guangzhou and Nanjing, parents frequently describe feelings of guilt, pressure, and fear of educational failure, which may heighten their sensitivity to behavioral challenges and accelerate help-seeking behavior.

These dynamics collectively shape how parents interpret children's attention and self-regulation difficulties. When parental anxiety converges with high educational expectations and widespread media visibility of ADHD, behaviors that might otherwise be viewed as developmentally typical can be framed as clinical concerns. This interpretive shift contributes to increased rates of referral and diagnosis, particularly in urban settings with greater access to information and medical services.

7. Diagnostic Accuracy and Over-Diagnosis Risks

7.1 Symptom Overlap with Other Conditions

A major challenge in ensuring diagnostic accuracy for ADHD in China is the substantial overlap between ADHD symptoms and those of other developmental, emotional, and environmental conditions. Because inattentiveness, restlessness, and impulsive behavior are relatively nonspecific indicators, children presenting with these difficulties may be incorrectly diagnosed with ADHD when their symptoms stem from other underlying causes. This overlap contributes to diagnostic variability across clinical settings and increases the likelihood of

overdiagnosis, particularly in regions where specialist assessment resources are limited.

One common source of overlap involves anxiety disorders, which often manifest as distractibility, restlessness, and difficulty sustaining attention. Studies conducted at Peking University Sixth Hospital show that 20–30% of children referred for suspected ADHD exhibit primary anxiety symptoms rather than ADHD itself. Anxiety-related attentional shifts—driven by worry or hypervigilance—can closely mimic inattentive ADHD presentations, making differential diagnosis challenging without thorough clinical interviews or standardized measures.

Sleep disturbances also generate symptoms that resemble ADHD. Children who regularly experience insufficient sleep or poor sleep quality often show irritability, decreased attention span, and impaired executive functioning. Nationwide data from the China Sleep Research Society indicate that around 30% of school-aged children sleep fewer hours than recommended, especially in cities with high academic pressure. Such sleep-related attentional deficits may be misinterpreted as signs of ADHD if clinicians do not assess sleep patterns comprehensively.

In addition, learning disorders, particularly dyslexia and mathematics learning difficulties, can produce behaviors that resemble ADHD because children experiencing academic frustration may appear inattentive or avoidant in classroom tasks. Studies from Shanghai and Guangzhou have found that approximately 15–20% of children referred for ADHD evaluation meet criteria for specific learning disorders instead. Without access to standardized academic assessments, these distinctions may be easily missed in general pediatric settings.

Autism spectrum disorder (ASD) presents further diagnostic ambiguity. Many children with ASD show behaviors such as distractibility, impulsivity, and poor behavioral inhibition—symptoms that overlap significantly with ADHD presentations. Because ASD and ADHD frequently co-occur, distinguishing between primary and secondary attentional difficulties requires specialized developmental assessment, which is not consistently available in all regions of China.

Environmental and contextual factors may also produce ADHD-like symptoms. Stressful family environments, inconsistent parenting, excessive screen exposure, and noisy or overstimulating classrooms can all contribute to attentional instability. Without examining environmental contributors, clinicians may attribute these behaviors to ADHD prematurely.

These overlapping symptom presentations reveal the limitations of relying solely on behavioral rating scales or brief interviews. In settings with limited specialist access—particularly where general pediatricians conduct most evaluations—the risk of overlooking comorbidities or misidentifying primary conditions increases. Consequently, symptom overlap remains one of the most significant contributors to potential overdiagnosis, underscoring the need for more comprehensive evaluation frameworks and improved training for frontline clinicians.

7.2 Overuse of Brief Screening-Based Evaluations

The increasing reliance on brief screening tools in many clinical and educational settings across China contributes significantly to concerns about overdiagnosis. Although screening instruments such as short behavioral checklists or simplified symptom questionnaires are useful for preliminary identification, they are not designed to serve as standalone diagnostic tools. When used without comprehensive follow-up assessment, they can misclassify a wide range of attentional or behavioral difficulties as ADHD, particularly in contexts where specialist resources are scarce and clinical workflows are highly pressured.

A major driver of this issue is the limited availability of trained child mental health professionals. With fewer than 500 child psychiatrists nationwide, many hospitals—especially secondary and community-level facilities—depend on time-efficient methods to assess high volumes of children referred for attentional problems. As a result, screening questionnaires such as short versions of the Conners or locally adapted checklists are sometimes used as primary diagnostic evidence, despite lacking the depth necessary to differentiate ADHD from other conditions. Studies from pediatric departments in several provinces indicate that in more than 40% of cases, brief scales were the primary basis for diagnosis when specialist consultation was unavailable.

The educational system also contributes to this pattern. Schools under pressure to monitor student mental health often administer general behavioral screening surveys but may treat high scores as diagnostic indicators rather than triggers for further assessment. In a survey conducted in six urban districts, nearly 30% of school-based counselors reported that they “frequently rely on brief checklists” to recommend clinical evaluation, even when teachers lack formal training to interpret these tools correctly. This can create a referral cascade that amplifies parental concern and increases diagnostic demand in hospitals.

Brief evaluations are also more vulnerable to contextual bias. Parent-reported symptoms may reflect stress, sleep disruption, or academic pressure rather than true neurodevelopmental impairment, whereas teacher-reported symptoms can be influenced by class size, instructional style, or behavior expectations. Without structured interviews, neuropsychological testing, or multi-informant data, clinicians may interpret these biased reports as

sufficient evidence for ADHD, increasing the risk of misclassification.

Furthermore, reliance on brief tools limits the ability to assess comorbidities. Conditions such as anxiety, depression, learning disorders, or autism-related traits may be overlooked when evaluations focus solely on surface-level symptoms. This is particularly problematic in China, where comorbidity rates among children suspected of ADHD are reported to be over 50% in tertiary hospitals but are rarely identified in brief assessments.

The overuse of screening-based evaluations reflects systemic constraints rather than individual clinician error. However, it underscores the need for more standardized multi-step diagnostic protocols and improved training for frontline providers. Without such safeguards, screening tools—though valuable—risk contributing to diagnostic inflation and obscuring the complex developmental profiles that underlie children's attentional and behavioral difficulties.

8. Toward a Neurodevelopmentally Informed Diagnostic Framework

Developing a more accurate and equitable ADHD diagnostic framework in China requires shifting from symptom-centered evaluation toward a neurodevelopmentally grounded, multi-informant, and cross-system approach. Given the rising demand for assessment and the structural constraints identified in previous sections, a forward-looking model must strengthen early developmental monitoring, standardize diagnostic procedures, and enhance coordination across families, schools, and healthcare providers. These improvements would not only enhance diagnostic accuracy but also ensure that children with attentional difficulties receive appropriate supports, whether or not they meet full ADHD criteria.

8.1 Improved Developmental Surveillance

A foundational step is strengthening developmental surveillance within primary healthcare and early childhood education systems. Currently, developmental assessments are largely fragmented and unevenly distributed across regions. Integrating structured monitoring into routine well-child visits—similar to models implemented in Canada and Australia—would allow clinicians to identify early signs of attentional and regulatory difficulties before academic pressures intensify symptoms. Evidence from the National Health Commission indicates that more than 80% of Chinese children participate in regular physical health check-ups during the early years, yet structured neurodevelopmental screening is rarely included. Leveraging this existing infrastructure to incorporate brief developmental tools, caregiver interviews, and early behavioral checklists would expand early detection and reduce reliance on crisis-driven referrals later in childhood.

Moreover, community health centers and kindergartens could collaborate to track developmental trajectories across the preschool years, when attention, inhibition, and executive function undergo rapid maturation. Providing parents with developmentally accurate expectations—such as typical attention span ranges—may also reduce anxiety-driven overreferrals and help differentiate transient behavioral variability from emerging neurodevelopmental patterns.

8.2 Standardized Diagnostic Procedures

To improve diagnostic consistency, a unified standard for ADHD evaluation should be adopted across hospitals and regions. Although DSM-5 and ICD-11 criteria are increasingly used in tertiary hospitals, application remains inconsistent across pediatric, psychiatric, and community healthcare settings. Establishing national guidelines—similar to the 2022 Chinese Experts' Consensus on ADHD—and extending implementation to secondary hospitals would reduce variability stemming from clinician experience or tool availability.

A standardized diagnostic procedure should include:

- 1) Multi-informant behavioral rating scales (e.g., ADHD-RS-IV, Conners-3) collected from both parents and teachers.
- 2) Structured or semi-structured interviews to evaluate developmental history, symptom onset, and functional impairment.
- 3) Neurocognitive testing, such as sustained attention and inhibitory control tasks, where resources allow.
- 4) Screening for comorbidities, particularly anxiety, sleep disturbances, learning disorders, and autism spectrum traits.
- 5) Documentation of environmental influences, including academic pressure, sleep routine, and screen exposure.

Importantly, brief screening tools should be restricted to preliminary triage. Diagnostic decisions should not rely solely on short checklists, especially given their vulnerability to context-driven bias. Extending training programs for general pediatricians—who diagnose a substantial share of cases—would further reinforce the fidelity of assessment procedures.

8.3 Better Coordination Across School–Family–Clinic Settings

ADHD assessment and management require collaboration across the environments in which children function. However, in China, communication between families, teachers, and clinicians is often fragmented, leading to inconsistent reporting and misinterpretation of behaviors. Establishing more structured communication pathways could improve diagnostic accuracy and reduce both over- and under-identification.

Schools should provide standardized teacher reports describing behavioral patterns across academic tasks, transitions, and peer interactions. Such reporting should not be limited to symptom checklists but should include contextual descriptions—classroom size, academic expectations, instructional practices—that may influence attentional performance. Training teachers to identify developmentally appropriate versus concerning behaviors would help refine the quality of referrals and reduce false positives driven by academic pressure.

Clinics, in turn, can offer parents clear, structured feedback on assessment results and provide schools with practical, evidence-based recommendations for classroom support, rather than merely returning a diagnostic label. Developing local referral networks—linking schools with community health centers and tertiary hospitals—would ensure smoother pathways to evaluation and reduce the wide variation in assessment access across districts.

Finally, establishing a shared documentation framework, potentially through digital health platforms or district-level education–health partnerships, would allow for more consistent follow-up, reduce repetitive assessments, and create continuity across developmental stages.

A neurodevelopmentally informed diagnostic framework requires early surveillance, nationwide standardization, and strong cross-setting coordination. By addressing structural inequalities in access and improving the quality of information shared across families, schools, and healthcare professionals, China can move toward a more accurate, equitable, and developmentally grounded system for identifying and supporting children with attentional and self-regulation challenges.

References

American Psychiatric Association, (2013). *Diagnostic and statistical manual of mental disorders* (5th ed.).

Bao, C., Sun, Y., & Wang, F., (2021). Mode of delivery and risk of ADHD: A population-based study in China. *BJOG: An International Journal of Obstetrics & Gynaecology*, 128(4), 644–652.

Chen, Z., Wang, L., Li, J., & Qiu, L., (2021). PM2.5 exposure and neurodevelopmental outcomes in Chinese children. *Environmental Pollution*, 286, 117563.

China Family Panel Studies, (2020). *Annual Report on Family Education Anxiety*. Peking University Institute of Social Science Survey.

China Sleep Research Society, (2021). *National Children's Sleep Health Report*.

Chinese Academy of Education Sciences, (2021). *Primary School Mental Health Education Survey Report*.

Chinese Academy of Education Sciences, (2021). *National Preschool Children Digital Use Survey*.

Chinese Center for Disease Control and Prevention, (2018). *Report on Passive Smoking During Pregnancy and Child Behavioral Outcomes*.

Chinese Maternal and Child Health Association, (2020). *China Maternal Health Surveillance Report*.

Chinese Society of Psychiatry, (2021). *White Paper on Child Psychiatry Workforce in China*.

Conners, C. K., (2014). *Conners-3 manual*. Multi-Health Systems.

Frazier, T. W., Demaree, H. A., & Youngstrom, E. A., (2004). Meta-analysis of continuous performance test performance in attention-deficit/hyperactivity disorder. *Journal of Clinical Child and Adolescent Psychology*, 33(3), 524–540.

Huang, Y., Chen, R., & Cai, J., (2019). Maternal hypertensive disorders and ADHD risk in offspring. *Pediatrics International*, 61(5), 451–457.

Li, M., Zhang, X., & Fang, H., (2018). Low birth weight and neurodevelopmental outcomes in Chinese children. *Early Human Development*, 127, 1–7.

Li, X., & Qian, Y., (2018). Continuous performance test profiles in Chinese children with ADHD. *Journal of Attention Disorders*, 22(6), 547–556.

Liu, J., & Wang, Y., (2017). Blood lead levels and executive function in Chinese children. *Neurotoxicology*, 59, 74–80.

Liu, X., Yang, X., & Li, L., (2019). Use of K-SADS in Chinese clinical settings. *Psychiatry Research*, 272,

594–601.

National Health Commission of China, (2020). *National Mental Health Resources Report*.

Ren, Q., & Chen, S., (2022). ADHD communication in Chinese social media. *Health Communication*, 37(12), 1479–1490.

Shaw, P., Eckstrand, K., Sharp, W., Blumenthal, J., Lerch, J. P., Greenstein, D., ... & Rapoport, J. L., (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. *Proceedings of the National Academy of Sciences*, 104(49), 19649–19654.

Sun, H., Zhang, R., & Wei, J., (2022). Prenatal PM2.5 exposure and ADHD-related behaviors in Chinese schoolchildren. *Environmental Research*, 204, 112078.

Wang, Y., Li, T., & Sun, Y., (2020). EEG markers of inhibitory control in Chinese children with ADHD. *Clinical Neurophysiology*, 131(11), 2631–2639.

World Health Organization, (2019). *ICD-11: International classification of diseases* (11th revision).

World Health Organization, (2020). *Born Too Soon: Preterm Birth Report*.

Wu, X., & Chen, Z., (2019). Learning disorders among children referred for ADHD evaluation: Evidence from Shanghai. *Journal of Learning Disabilities*, 52(6), 586–597.

Xu, X., Ji, C., & Hong, X., (2018). Prefrontal dysfunction in Chinese children with ADHD: Evidence from stop-signal reaction time. *Chinese Mental Health Journal*, 32(6), 475–482.

Xu, Y., Liang, H., & Li, S., (2020). Anxiety disorders misdiagnosed as ADHD: A Chinese clinical analysis. *Asian Journal of Psychiatry*, 47, 101–106.

Yang, S., Chen, C., & Chen, D., (2020). Gestational diabetes mellitus and behavioral outcomes in offspring: Evidence from a large Chinese cohort. *Diabetes Care*, 43(1), 155–162.

You, D., & Zhang, T., (2019). Teachers' recognition of ADHD symptoms in Chinese primary schools. *Frontiers in Psychology*, 10, 796.

Zhang, J., & Huang, X., (2016). Validation of the ADHD-RS-IV in Chinese children. *Child Psychiatry & Human Development*, 47(2), 230–239.

Zhang, S., Zhou, R., & Yang, L., (2019). Maternal stress during pregnancy and ADHD symptoms in offspring: Evidence from a Chinese cohort. *Journal of Affective Disorders*, 257, 1–7.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (<http://creativecommons.org/licenses/by/4.0/>).

Epileptogenesis as a Multilevel Process: Cellular, Circuit, and Network Mechanisms

Javier Santos¹

¹ University of Granada, Spain

Correspondence: Javier Santos, University of Granada, Spain.

doi:10.63593/JIMR.2788-7022.2025.10.006

Abstract

Epileptogenesis represents the gradual transformation of the brain from a normal to a chronically hyperexcitable and hypersynchronous state. This paper proposes a unified multilevel framework describing epileptogenesis as a hierarchical and dynamic process spanning molecular, cellular, circuit, and network domains. At the molecular level, dysregulation of ion channels, neurotransmitter receptors, and chloride homeostasis disrupts excitability. At the cellular level, altered synaptic transmission, receptor trafficking, and maladaptive plasticity reinforce hyperexcitability and disinhibition. At the circuit level, microcircuit reorganization—through interneuron loss, mossy fiber sprouting, and impaired feedback inhibition—produces local oscillatory instability. At the network level, large-scale reconfiguration of functional connectivity and synchronization transforms regional disturbances into global epileptic dynamics. Glial and immune mechanisms modulate these processes by shaping extracellular homeostasis, inflammation, and blood–brain barrier integrity. Across these layers, feedback loops couple molecular defects with network behavior, producing self-reinforcing cycles of excitation and maladaptive remodeling. Temporally, epileptogenesis progresses through acute, latent, and chronic phases, each characterized by distinct but interconnected processes. The paper synthesizes these mechanisms into a cascade model emphasizing cross-scale feedback, critical transitions, and loss of resilience as defining features. This integrative perspective reframes epilepsy not as a static condition of recurrent seizures but as a systems-level reorganization driven by multilevel interactions. Mechanism-based classification and intervention strategies are discussed, emphasizing the transition from symptomatic control to causal correction. By linking molecular neurobiology, synaptic physiology, and network theory, the paper advances a comprehensive conceptual architecture for understanding, preventing, and reversing epileptogenesis.

Keywords: epileptogenesis, synaptic plasticity, network synchronization, neuroinflammation, critical transitions, systems neuroscience, mechanism-based classification, network reorganization, maladaptive plasticity

1. Introduction

Epileptogenesis is the progressive transformation of a structurally and functionally stable brain into one predisposed to generate recurrent, spontaneous seizures. The process involves a gradual reorganization of neural function across molecular, cellular, circuit, and network domains. Rather than a discrete event, it unfolds as a continuum of interdependent alterations that reshape the excitatory–inhibitory equilibrium and the architecture of neuronal communication. The phenomenon embodies the principle of systems reconfiguration, where minor molecular disturbances can propagate upward to modify the behavior of large-scale brain networks.

In its broadest conception, epileptogenesis describes a deviation from neural homeostasis that becomes self-reinforcing. The normal brain operates through dynamic balance, adjusting its activity through feedback mechanisms that preserve stability. When the regulation of excitability, plasticity, or metabolic support becomes chronically impaired, this balance deteriorates, allowing the emergence of hyperexcitable assemblies. Such assemblies develop their own internal dynamics, often independent of external sensory or behavioral demands,

producing spontaneous discharges that evolve into seizures.

Traditional models of epilepsy have sought to localize its origin either to the molecular domain, emphasizing ion channel mutations and neurotransmitter receptor dysfunctions, or to the macroscopic level of network synchronization observed in electrophysiological recordings. Each perspective captures a necessary but insufficient component of the process. The molecular approach identifies the genetic and biophysical substrates of excitability, yet it cannot account for the emergence of coherent seizure activity that spans multiple brain regions. The network approach characterizes large-scale synchronization, yet it does not explain how microscopic perturbations accumulate into system-wide instability.

A multilevel perspective unifies these views by recognizing that epileptogenesis is distributed across a hierarchy of organizational scales. The *cellular level* forms the substrate of neural signaling through the properties of neuronal membranes, ionic currents, and synaptic transmission. Variations in ion channel kinetics or receptor expression alter the responsiveness of individual neurons to synaptic inputs. The *circuit level* organizes these neurons into local assemblies whose connectivity determines how excitation and inhibition are integrated. Circuit motifs, such as recurrent excitatory loops or inhibitory feedback pathways, define the microdynamics that regulate local synchrony. The *network level* represents the macroscopic coordination of distant brain regions, governed by both anatomical connectivity and dynamic coupling. At this scale, seizures emerge as global states of synchronization that reflect the cumulative instability of underlying circuits.

The relationship among these levels is neither linear nor unidirectional. Alterations at one level can induce compensatory or amplifying changes at another. A mutation in a sodium channel gene can modify action potential threshold, which reshapes firing patterns within a circuit. Recurrent circuit activation strengthens excitatory connections, reinforcing network synchrony. Network synchronization in turn modifies gene expression through activity-dependent signaling pathways. Epileptogenesis thus becomes a circular process in which feedback across scales transforms temporary disturbances into stable pathological patterns.

The concept of hierarchy in systems neuroscience provides a framework for understanding this progression. Each level of organization possesses emergent properties that cannot be fully inferred from the level below it, yet each remains constrained by lower-level mechanisms. The neuron's membrane potential constrains synaptic integration; the circuit's topology constrains network synchrony; the network's global activity constrains individual neuronal firing. Epileptogenesis operates through perturbations that exploit these dependencies, gradually reconfiguring the rules of interaction among components.

Defining epileptogenesis as a multilevel process has conceptual and clinical implications. It directs attention away from isolated lesions or single molecular defects toward the dynamic processes that connect them. The aim is not to identify a singular origin of seizures but to map the causal chains linking microstructural alterations to system-level instability. Such an approach enables mechanistic explanations that traverse scales and offers theoretical grounding for interventions that target the propagation of dysfunction rather than its final manifestation.

Understanding epileptogenesis within this framework requires a synthesis of biophysics, neurophysiology, and network science. The task is to describe how the biophysical properties of cells contribute to emergent circuit behavior and how circuit interactions form the substrate for global synchronization. A successful model must capture not only the triggers of seizure generation but also the mechanisms by which transient disruptions consolidate into chronic epileptic states.

The objective of the present paper is to develop such a unified account. It will analyze epileptogenesis as an emergent system of cascading mechanisms, tracing the transformation from molecular perturbations to network-level reorganization. The analysis will emphasize the interdependence of cellular excitability, synaptic plasticity, circuit connectivity, and large-scale synchronization. By integrating these dimensions, it seeks to clarify how epileptogenesis evolves as a multilevel process and how this perspective can inform new strategies for prevention and treatment.

2. Conceptual Foundations of Epileptogenesis

The conceptual history of epileptogenesis reflects a gradual expansion from the neuron-centered view of hyperexcitability to a systemic understanding of the brain as a self-organizing network. In early physiological research, seizures were attributed primarily to excessive firing of individual neurons. The discovery that electrical stimulation could induce epileptiform discharges led to the assumption that intrinsic membrane instability constituted the core of epilepsy. Over time, as electrophysiological and imaging technologies advanced, it became clear that seizures represent a coordinated phenomenon that recruits vast populations of neurons distributed across multiple brain regions. The focus of inquiry shifted from isolated neurons to the collective properties of neural systems.

The term *epileptogenesis* designates the entire process through which a previously normal brain develops the

capacity for spontaneous recurrent seizures. It differs from seizure generation, which is the immediate mechanism by which a single epileptic event occurs. Epileptogenesis encompasses the latent period during which structural, molecular, and functional modifications accumulate silently, eventually establishing a state of persistent hyperexcitability. This distinction is fundamental because it separates the transient electrophysiological events of a seizure from the enduring biological transformation that allows such events to reappear.

The phenomenon is not uniform. It may follow an acute brain insult such as trauma, infection, or prolonged seizures, or arise gradually through genetic or developmental anomalies. In each case, the underlying principle remains that repeated perturbations reshape the excitatory–inhibitory equilibrium and modify synaptic and network organization. The brain transitions from a dynamic system that resists perturbation to one that amplifies it.

The *kindling model* illustrates this transformation. In experimental animals, repeated subthreshold electrical or chemical stimulations of certain brain regions progressively lower the threshold for seizure induction. Initially, the same stimulus elicits only brief afterdischarges. With repetition, it produces prolonged events and, eventually, spontaneous seizures. This progressive facilitation demonstrates that epileptogenesis involves long-term plastic changes within neural circuits. The kindled brain retains a memory of past excitations, embedded in modified synaptic strength, altered receptor composition, and reorganized connectivity.

Three concepts frame the theoretical core of epileptogenesis: excitability, synchrony, and plasticity. Excitability denotes the intrinsic ability of neurons to respond to synaptic input with action potentials. It depends on ion channel properties, resting membrane potential, and intracellular signaling. In epileptogenesis, excitability becomes persistently elevated, either through increased inward currents, reduced inhibitory tone, or altered modulation of voltage-gated channels.

Synchrony describes the temporal coordination of neuronal activity within and across populations. In physiological conditions, synchrony supports information encoding and oscillatory rhythms. When synchronization escapes inhibitory regulation, it turns into hypersynchrony, the hallmark of seizure activity. The degree and pattern of synchrony determine whether neural assemblies function as coherent processing units or pathological generators.

Plasticity represents the capacity of synapses and circuits to modify their strength and organization in response to activity. It provides the mechanism through which transient excitatory events become structurally consolidated. Long-term potentiation (LTP) and long-term depression (LTD) are physiological expressions of plasticity, but when regulatory mechanisms fail, these same processes can promote maladaptive reinforcement of excitatory pathways. In epileptogenesis, plasticity loses its homeostatic balance and becomes a vector for pathological stability.

Homeostasis operates as the fourth implicit element linking these processes. Neural systems maintain stability through negative feedback mechanisms that regulate firing rates, receptor expression, and synaptic scaling. When sustained stress or injury exceeds the capacity of these mechanisms, the feedback becomes maladaptive. Excitatory neurons increase connectivity to compensate for inhibition loss, interneurons undergo exhaustion, and glial cells alter extracellular ion concentrations. The resulting environment favors runaway excitation, completing the transition to a self-sustaining epileptic state.

Historically, theoretical models of epilepsy have alternated between reductionism and holism. The reductionist approach identifies specific molecular or cellular defects, providing clarity at the cost of systemic coherence. The holistic approach emphasizes emergent properties of neural networks but often lacks mechanistic precision. A balanced model requires the integration of both perspectives, where molecular abnormalities are interpreted as initiating perturbations that evolve through circuit dynamics into network-level phenomena.

Epileptogenesis can thus be seen as a multistage reconfiguration of the brain's internal dynamics. The process begins with molecular disturbances that alter excitability, progresses through changes in synaptic organization that modify local circuitry, and culminates in the emergence of large-scale synchrony. The transformation is cumulative and self-reinforcing, reflecting the interaction of adaptive and maladaptive plasticity.

A central conceptual insight is that epileptogenesis represents a failure of neural adaptability rather than a mere excess of excitation. The normal brain adapts continuously to maintain equilibrium between plasticity and stability. In the epileptogenic brain, adaptive mechanisms are distorted into mechanisms of persistence. Instead of restoring balance, activity-dependent processes amplify instability. The system acquires new attractor states corresponding to pathological rhythms, and once established, these attractors constrain future activity patterns.

This understanding reframes epilepsy from a static pathology to a dynamic disease process. It emphasizes temporal evolution and causal hierarchy rather than static lesions or symptom clusters. The shift from describing seizures to explaining epileptogenesis aligns epilepsy research with broader systems neuroscience, which seeks

to understand how complex networks maintain and lose stability.

By grounding the concept of epileptogenesis in excitability, synchrony, plasticity, and homeostasis, one obtains a foundation for integrating observations across scales. The next sections explore how these principles manifest in cellular mechanisms involving ion channels and receptor dynamics, and how they propagate upward to circuits and networks.

3. Cellular-Level Mechanisms: Ion Channels and Membrane Excitability

At the cellular level, epileptogenesis originates in the fundamental properties of the neuronal membrane. The excitability of a neuron depends on the balance between depolarizing and hyperpolarizing currents generated by ion channels embedded in the membrane. These channels establish the resting membrane potential, shape the action potential, and regulate the refractory period that controls firing frequency. Small perturbations in their function can shift the excitatory–inhibitory equilibrium toward instability, allowing neurons to fire in bursts or in response to subthreshold stimuli.

3.1 Voltage-Gated Sodium Channels

Voltage-gated sodium channels initiate the rapid depolarization that defines the action potential. Mutations in genes such as SCN1A, SCN2A, or SCN8A alter the kinetics of activation and inactivation, extending the period during which sodium conductance remains open. A prolonged inward sodium current reduces the threshold for action potential initiation and increases the likelihood of repetitive firing. In inhibitory interneurons, loss-of-function mutations in SCN1A diminish their capacity to regulate network excitation. In excitatory pyramidal neurons, gain-of-function mutations amplify the depolarizing drive. Both outcomes converge on an increased probability of synchronized discharge within local circuits. The dynamics of sodium channel gating also interact with intracellular signaling pathways. Persistent sodium current elevation modifies calcium handling through secondary activation of voltage-dependent calcium channels. This coupling between sodium and calcium signaling creates a bridge between membrane excitability and intracellular plasticity mechanisms that contribute to the consolidation of hyperexcitability.

3.2 Potassium Channels and Repolarization

Potassium channels provide the counterforce that restores the resting potential after depolarization. They determine the duration of the action potential and set the neuronal firing threshold. Defective delayed rectifier channels slow repolarization, leading to afterdepolarizations and repetitive firing. Mutations in channels such as KCNQ2 or KCNQ3 reduce the M-current, a non-inactivating potassium current that normally dampens excitatory bursts. The loss of this stabilizing influence promotes rhythmic oscillations characteristic of epileptiform activity. Inwardly rectifying potassium channels contribute to resting potential maintenance and extracellular potassium buffering. Impaired function elevates extracellular potassium concentration, which depolarizes neighboring neurons, producing a local environment of increased excitability. These local changes propagate through glial networks and disrupt regional ionic equilibrium, linking cellular malfunction to tissue-level instability.

3.3 Calcium Channels and Intracellular Signaling

Calcium channels are both mediators of excitability and messengers of cellular plasticity. During an action potential, voltage-gated calcium channels open briefly, allowing influx of calcium ions that trigger neurotransmitter release and activate intracellular enzymes. Dysregulation of these channels alters both synaptic transmission and gene expression. T-type calcium channels, prominent in thalamic neurons, promote rhythmic burst firing when persistently activated. L-type calcium channels influence transcriptional activity and can initiate signaling cascades that lead to structural remodeling.

Chronic calcium overload induces oxidative stress, mitochondrial dysfunction, and activation of calcium-dependent proteases. These processes alter membrane proteins and receptor composition, embedding hyperexcitability within the molecular architecture of the cell. In epileptogenesis, calcium signaling becomes a central mediator of the transition from reversible excitatory responses to irreversible structural and functional change.

3.4 Chloride Homeostasis and GABAergic Polarity

The efficacy of inhibitory transmission depends on the chloride gradient across the neuronal membrane. Under physiological conditions, low intracellular chloride concentration ensures that activation of GABA_A receptors results in hyperpolarization. The cotransporters KCC2 and NKCC1 maintain this gradient by extruding and importing chloride, respectively. In many epileptogenic conditions, KCC2 expression decreases or NKCC1 expression increases, leading to intracellular chloride accumulation.

This shift reverses the polarity of GABAergic signaling. Instead of producing inhibition, GABA_A receptor activation depolarizes neurons, converting an inhibitory system into an excitatory one. The paradoxical

excitation disrupts synchronization control within local circuits and undermines inhibitory restraint. Altered chloride homeostasis thus transforms a protective mechanism into a driver of epileptogenesis.

3.5 Integration and Excitation–Inhibition Imbalance

Each class of ion channel contributes to the cell's electrical identity. The combined effect of altered sodium, potassium, calcium, and chloride conductances produces a cumulative increase in excitability that is not simply additive. These channels interact dynamically, and modification of one conductance changes the effective range of others. The result is a shift in the balance between excitation and inhibition that favors repetitive or synchronous firing.

The excitation–inhibition imbalance forms the foundation for the higher-level manifestations of epileptogenesis. At the single-cell level, increased firing probability enhances the likelihood of simultaneous discharges among connected neurons. At the population level, these discharges synchronize, producing oscillatory instability that can propagate through circuits. The pathological synchronization observed in seizures originates in this cellular imbalance, magnified by the network's intrinsic connectivity.

3.6 Channelopathies as Starting Points of Epileptogenesis

Inherited or acquired channelopathies serve as primary initiators of epileptogenesis in many forms of epilepsy. Mutations affecting sodium or potassium channels, alterations in calcium channel expression, and disruption of chloride transporters can arise from genetic defects or secondary processes such as inflammation or hypoxia. Each initiates a cascade of compensatory responses intended to restore stability. These compensations, however, often introduce new forms of instability. For example, upregulation of excitatory receptors compensates for reduced depolarization but enhances the overall excitatory drive.

Channelopathies demonstrate how localized molecular defects propagate across scales. A single amino acid substitution in a channel protein can alter neuronal firing patterns, reshape synaptic dynamics, and ultimately reconfigure network oscillations. The transition from molecular disturbance to system-level pathology exemplifies the multilevel nature of epileptogenesis.

3.7 The Cellular Context of Systemic Transformation

The neuron does not operate in isolation. Its membrane properties are influenced by extracellular ion concentrations, glial regulation, and metabolic state. Epileptogenesis at the cellular level involves both intrinsic membrane dysfunction and extrinsic modulation. Astrocytic potassium and glutamate buffering, microglial cytokine signaling, and vascular permeability contribute to the environment in which neuronal excitability is expressed. The cellular phase of epileptogenesis is therefore not a discrete stage but the foundational substrate for subsequent circuit and network reorganization. The altered excitability of individual neurons sets the conditions for maladaptive plasticity and synchronization, which define the next stages of the epileptogenic process.

4. Cellular-Level Mechanisms: Neurotransmitter Systems and Receptor Dynamics

The transition from isolated neuronal hyperexcitability to organized epileptiform activity depends not only on ionic conductances but also on the modulation of neurotransmitter systems. The molecular architecture of synaptic receptors determines how excitation and inhibition are transmitted, integrated, and modified by activity. Epileptogenesis involves progressive alterations in glutamatergic and GABAergic transmission, receptor trafficking, and neuromodulatory signaling. These processes reshape synaptic efficacy and render the network prone to excessive synchronization.

4.1 Glutamatergic Transmission and Receptor Dysregulation

Glutamate is the principal excitatory neurotransmitter in the central nervous system. Its receptors, classified as ionotropic (AMPA, NMDA, kainate) and metabotropic (mGluR), regulate both fast and slow components of excitatory transmission. The balance among these receptor systems ensures that excitatory drive remains temporally and spatially controlled. During epileptogenesis, this balance deteriorates.

AMPA receptors mediate rapid depolarization through sodium influx. Overexpression of GluA1-containing subunits, reduced receptor desensitization, or impaired endocytosis leads to prolonged excitatory currents. In models of temporal lobe epilepsy, synaptic AMPA receptor density increases significantly in granule cells and pyramidal neurons, amplifying excitatory postsynaptic potentials. These molecular adjustments promote persistent depolarization that sustains network hyperactivity.

NMDA receptors are voltage- and ligand-gated, serving as coincidence detectors for synaptic plasticity. Their prolonged activation permits calcium entry that drives transcriptional programs and structural remodeling. Under pathological conditions, excessive NMDA receptor activity induces calcium overload, mitochondrial stress, and excitotoxic injury. The resulting neuronal loss and reactive synaptogenesis create circuits with heightened

excitatory connectivity. This process exemplifies how cellular-level receptor dysregulation translates into circuit reorganization.

Kainate receptors, though less studied, modulate presynaptic release probability. Their overactivation enhances glutamate release, establishing a feedback loop that reinforces hyperexcitability. Abnormal activation of group I metabotropic glutamate receptors (mGluR1 and mGluR5) also contributes by stimulating phospholipase C signaling and intracellular calcium release. This pathway facilitates long-term potentiation of excitatory synapses beyond physiological limits, converting adaptive plasticity into maladaptive persistence.

4.2 GABAergic Transmission and the Loss of Inhibitory Tone

The inhibitory system centered on GABA counterbalances excitatory transmission. GABAergic interneurons synchronize neuronal populations and prevent runaway excitation. Epileptogenesis involves both quantitative and qualitative deterioration of this system. Reduction in the number or function of inhibitory interneurons decreases network stability. Selective vulnerability of parvalbumin-positive and somatostatin-positive interneurons has been documented in chronic epilepsy, leading to a diminished capacity for phasic and tonic inhibition.

At the receptor level, GABA_A receptors mediate fast inhibitory currents through chloride conductance. Alterations in subunit composition modify receptor kinetics and pharmacological sensitivity. Downregulation of $\alpha 1$ subunits and upregulation of $\alpha 4$ subunits shift receptor properties toward slower, less effective inhibition. Concurrent loss of GABA_B receptor function weakens slow inhibitory postsynaptic potentials that normally regulate network oscillations.

Decreased synthesis of GABA, caused by reduced expression of glutamic acid decarboxylase (GAD67), limits inhibitory neurotransmitter availability. Impaired vesicular GABA transport further diminishes inhibitory efficacy. Together these changes produce a state of disinhibition, allowing excitatory neurons to fire more readily and in synchrony.

4.3 Metabotropic and Neuromodulatory Contributions

Beyond fast synaptic transmission, neuromodulators exert long-term influence on excitability. Metabotropic glutamate receptors, dopamine, acetylcholine, and serotonin systems shape the excitability landscape through second messenger cascades. In epileptogenesis, persistent alterations in these pathways modify receptor sensitivity and neuronal responsiveness.

For example, activation of mGluR5 in the hippocampus enhances excitatory transmission through phosphatidylinositol signaling and protein kinase C activation. Chronic overactivation of this pathway leads to increased NMDA receptor phosphorylation and enhanced calcium permeability. Dopaminergic D2 receptor downregulation weakens inhibitory feedback in cortico-striatal circuits. Alterations in cholinergic signaling influence thalamocortical synchronization, affecting rhythmic control that distinguishes physiological oscillations from epileptiform bursts.

These neuromodulatory imbalances are not transient. Receptor sensitivity and intracellular signaling efficiency adapt to persistent network activity, embedding the hyperexcitable state within the cellular biochemistry of the neuron.

4.4 Receptor Trafficking and Activity-Dependent Remodeling

Synaptic strength depends not only on receptor quantity but also on their spatial distribution and trafficking dynamics. In physiological conditions, synaptic activity induces receptor insertion or removal to maintain balance between excitation and inhibition. During epileptogenesis, these regulatory mechanisms are altered.

Sustained high-frequency activity enhances surface expression of AMPA and NMDA receptors while reducing GABA_A receptor clustering. The process involves phosphorylation of receptor subunits and modifications in scaffold proteins such as gephyrin and PSD-95. The net effect is a persistent enhancement of excitatory drive coupled with weakening of inhibitory control.

Endocytosis of inhibitory receptors or impaired recycling prevents restoration of inhibitory balance after excitatory bursts. Synapses thus retain a hyperexcitable profile, even in the absence of external stimuli. This form of plasticity constitutes a molecular memory of epileptogenic activity, ensuring that transient events have long-term consequences for network excitability.

4.5 Neuropeptides and Seizure Susceptibility

Neuropeptides act as fine regulators of excitability and network synchronization. Neuropeptide Y (NPY), somatostatin, and galanin exert inhibitory modulation by suppressing glutamate release or enhancing potassium conductance. In epileptogenic tissue, expression of these peptides is often reduced, eliminating an important buffering mechanism. Loss of NPY in hippocampal interneurons removes presynaptic inhibition of excitatory

terminals, increasing glutamate release. Decreased somatostatin reduces inhibitory tone within dendritic compartments, facilitating dendritic calcium spikes that sustain synchronous discharges.

Conversely, some peptides such as substance P or corticotropin-releasing factor (CRF) promote excitation through presynaptic facilitation. Elevated levels of these excitatory peptides have been reported in chronic epilepsy, suggesting a complex reorganization of peptidergic modulation during epileptogenesis.

4.6 Integrated Perspective

The cumulative effect of receptor dysregulation, inhibitory failure, and neuromodulatory imbalance transforms the neuron into an amplifier of excitation. Receptor trafficking and transcriptional adaptations ensure that this transformation persists long after the initiating insult. Cellular excitability becomes an intrinsic property rather than a temporary state. From a systems viewpoint, these molecular alterations constitute the microfoundations of epileptogenesis. The neuron ceases to function as an independent computational unit and becomes part of a self-reinforcing ensemble that favors synchronous activity. Such ensembles form the seeds of hyperexcitable circuits, linking the cellular level to the circuit-level dynamics that will later dominate epileptic pathology.

5. Glial Mechanisms in Epileptogenesis

Epileptogenesis cannot be understood solely in neuronal terms. Glial cells, once regarded as passive structural support, are now recognized as active regulators of ionic balance, neurotransmitter recycling, and metabolic stability. Astrocytes, microglia, and oligodendrocytes shape the extracellular milieu that determines neuronal excitability. During epileptogenesis, these cells undergo functional and morphological transformations that sustain hyperexcitability, propagate inflammatory signaling, and weaken homeostatic control. The glial contribution converts local disturbances into system-wide instability, providing a bridge between molecular pathology and network reorganization.

5.1 Astrocytic Regulation of Glutamate Homeostasis

Astrocytes maintain extracellular glutamate concentration through high-affinity transporters, primarily EAAT1 (GLAST) and EAAT2 (GLT-1). These transporters prevent excitotoxic accumulation of glutamate in the synaptic cleft. In epileptogenic tissue, expression or function of EAAT2 is often reduced, leading to inefficient glutamate clearance. The resultant elevation in extracellular glutamate increases activation of postsynaptic receptors and promotes sustained depolarization.

Astrocytic processes envelop synapses and form the structural basis for tripartite synaptic regulation. When these processes retract under inflammatory or oxidative stress, diffusion of glutamate extends beyond its intended synaptic target, producing spillover excitation in adjacent neurons. This spatial diffusion enhances synchrony by linking neighboring neurons through shared excitatory fields.

5.2 Potassium Buffering and Kir4.1 Dysfunction

Astrocytes also regulate extracellular potassium through Kir4.1 inwardly rectifying potassium channels. During intense neuronal activity, potassium accumulates in the extracellular space. Astrocytes absorb this excess and redistribute it through gap-junction networks in a process known as spatial buffering. Impairment of Kir4.1 function or downregulation of its expression elevates extracellular potassium concentration, depolarizing neurons and lowering their firing threshold.

Experimental deletion of Kir4.1 in astrocytes reproduces key electrophysiological features of epilepsy, including spontaneous epileptiform discharges. In human epileptic tissue, reduced Kir4.1 expression correlates with seizure frequency. The failure of astrocytic potassium buffering exemplifies how glial dysfunction can shift the ionic equilibrium of entire networks, independent of neuronal mutations or receptor pathology.

5.3 Gap Junctions and Glial Network Synchronization

Astrocytes are interconnected by gap junctions composed primarily of connexin proteins **Cx43** and **Cx30**. These junctions permit the diffusion of ions and metabolites, enabling astrocytic networks to regulate extracellular composition over wide regions. Alterations in connexin expression during epileptogenesis modify intercellular communication. In some contexts, enhanced coupling facilitates the spread of calcium waves that synchronize astrocytic activity. The propagated calcium transients can trigger glutamate release through vesicular and hemichannel pathways, thereby exciting adjacent neurons.

Conversely, excessive uncoupling isolates astrocytic domains, reducing their capacity to buffer ions efficiently. Both extremes disturb homeostasis and contribute to network instability. The duality of gap-junctional changes reveals that astrocytic networks participate directly in the spatial coordination of excitation.

5.4 Microglial Activation and Neuroinflammation

Microglia function as the immune sentinels of the central nervous system. Under resting conditions, they continuously monitor the microenvironment with highly motile processes. Following injury, infection, or

abnormal neural activity, microglia transition to an activated state characterized by cytokine release and phagocytic activity.

During epileptogenesis, microglial activation becomes chronic. Elevated levels of interleukin-1 β (IL-1 β), tumor necrosis factor-alpha (TNF- α), and high mobility group box 1 (HMGB1) have been observed in epileptic brain regions. These molecules influence neuronal excitability through multiple mechanisms. IL-1 β increases NMDA receptor phosphorylation, enhancing calcium permeability and excitatory transmission. TNF- α downregulates surface GABA_A receptors while upregulating AMPA receptors, amplifying the excitatory-inhibitory imbalance. HMGB1 acts on toll-like receptors and RAGE receptors to initiate proinflammatory signaling cascades that perpetuate glial activation.

Microglial-derived cytokines also disrupt astrocytic function, further compromising glutamate uptake and potassium buffering. The resulting neuroinflammatory milieu transforms the microenvironment into a pro-excitatory state. Over time, inflammatory mediators induce structural remodeling, including axonal sprouting and synaptic reorganization, embedding hyperexcitability within the architecture of the network.

5.5 Blood-Brain Barrier Breakdown

The integrity of the blood-brain barrier (BBB) ensures the chemical isolation of neural tissue from circulating factors. Breakdown of this barrier occurs in several epileptogenic conditions, including trauma, infection, and prolonged seizures. When plasma proteins such as albumin enter the parenchyma, they bind to transforming growth factor-beta (TGF- β) receptors on astrocytes, initiating signaling pathways that alter gene expression and increase neuronal excitability.

Albumin exposure downregulates Kir4.1 and EAAT2, impairs potassium and glutamate homeostasis, and promotes astrocytic transformation into a reactive phenotype. In parallel, leakage of immune mediators across the compromised barrier recruits peripheral immune cells that secrete additional cytokines. This interaction between systemic inflammation and local glial activation sustains the epileptogenic process long after the initial barrier disruption has resolved.

5.6 Metabolic Coupling and Energy Dynamics

Glial cells contribute to neuronal energy metabolism through the astrocyte-neuron lactate shuttle. Neurons depend on astrocytic glycolysis for the rapid provision of lactate during high activity states. In epileptogenesis, chronic overactivity and inflammation impair mitochondrial function in both neurons and astrocytes. The resulting energy deficit hinders reuptake of neurotransmitters and operation of ion pumps, producing ionic disequilibrium and promoting hyperexcitability.

Reactive oxygen species generated by dysfunctional mitochondria further damage membrane proteins and DNA, perpetuating glial and neuronal stress. This metabolic component links cellular energy homeostasis to the electrophysiological expression of seizures.

5.7 Integration of Glial Contributions

Astrocytic and microglial dysfunction, barrier permeability, and metabolic disruption converge to produce a pathological environment that nurtures hyperexcitability. The glial network, normally dedicated to maintaining stability, becomes a positive feedback system that reinforces neuronal excitation. Astrocytes fail to clear glutamate, microglia release proconvulsant cytokines, and vascular leakage introduces additional inflammatory triggers. These interactions transcend single-cell pathology and influence the collective behavior of neuronal populations. Epileptogenesis thus emerges as a multicellular phenomenon. Neurons, glia, and vascular elements form an integrated system where alterations in one component modify the behavior of the others. The cellular microenvironment becomes the foundation for maladaptive plasticity, preparing the ground for the structural and functional reorganization that defines the next stage of the epileptogenic cascade.

6. Synaptic Plasticity and Structural Remodeling

Epileptogenesis depends on enduring alterations in the structure and function of synapses. Synaptic plasticity represents the capacity of neuronal connections to strengthen or weaken in response to activity, forming the biological substrate for learning and memory. Under normal conditions, plasticity supports adaptive refinement of circuit function. In the epileptogenic brain, these same processes become maladaptive, reinforcing excitatory dominance and network instability. Structural remodeling and aberrant plasticity transform transient hyperexcitability into a self-sustaining state.

6.1 Long-Term Potentiation and Long-Term Depression Abnormalities

Long-term potentiation (LTP) and long-term depression (LTD) govern the bidirectional adjustment of synaptic strength. LTP enhances transmission through increased postsynaptic receptor density, augmented presynaptic neurotransmitter release, and structural enlargement of dendritic spines. LTD reduces synaptic efficacy by the

opposite mechanisms. The balance between these two forms of plasticity maintains the stability of information processing.

In epileptogenesis, LTP-like mechanisms become persistently activated while LTD mechanisms are weakened or absent. Excessive calcium influx through NMDA receptors or voltage-gated calcium channels activates calcium/calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC), leading to phosphorylation of AMPA receptors and increased synaptic insertion. The resulting synapses display enhanced excitatory transmission that resists normalization.

Impaired LTD further exacerbates this imbalance. Defective activation of phosphatases or metabotropic glutamate receptor pathways prevents removal of AMPA receptors from the postsynaptic membrane. The inability to downscale overactive synapses leaves excitatory connections potentiated indefinitely. This unidirectional strengthening converts synaptic plasticity from a mechanism of learning into a mechanism of pathological memory, encoding hyperexcitability into the network.

6.2 Mossy Fiber Sprouting in Temporal Lobe Epilepsy

Structural reorganization of axons and dendrites provides a morphological correlate of epileptogenic plasticity. The most studied example is mossy fiber sprouting in the dentate gyrus of the hippocampus. Under normal conditions, granule cell axons project to CA3 pyramidal neurons and avoid forming recurrent connections within the granule cell layer. After seizures or injury, these axons sprout aberrantly and establish excitatory synapses onto neighboring granule cells.

The new recurrent network creates a feedback loop that allows activity in one granule cell to propagate to others without external input. This loop converts the dentate gyrus, which normally serves as a gate controlling information flow into the hippocampus, into an amplifier of excitatory activity. The sprouted mossy fibers release glutamate onto their own dendritic fields, generating reverberating excitation that underlies seizure propagation.

Mossy fiber sprouting exemplifies how structural plasticity can shift the function of a circuit from filtering to amplification. The phenomenon is activity-dependent and self-reinforcing; repeated seizures promote further sprouting, which increases seizure likelihood, forming a positive feedback cycle that consolidates the epileptogenic state.

6.3 Dendritic Spine Alterations and Synaptic Reorganization

Dendritic spines are the principal sites of excitatory synapses. Their shape and density correlate with synaptic efficacy and plastic potential. In epileptogenic tissue, dendritic spines undergo both proliferation and morphological transformation. Spines may become elongated, thin, or irregular, indicating instability of synaptic structure.

Increased spine density is often observed in regions with recurrent seizures, reflecting compensatory or maladaptive responses to activity. Enlarged spines with greater postsynaptic density area contain higher numbers of AMPA and NMDA receptors, producing stronger excitatory currents. Conversely, loss of inhibitory synapses on the soma and proximal dendrites reduces local control of depolarization. The combination of excessive excitatory spines and diminished inhibitory contacts reshapes the excitatory–inhibitory architecture of the neuron.

At the ultrastructural level, seizure-induced calcium signaling activates actin remodeling pathways that stabilize the enlarged spines. Structural consolidation of excitatory contacts thus parallels the electrophysiological persistence of hyperexcitability.

6.4 Hebbian and Homeostatic Plasticity

Neural systems operate under two complementary forms of plasticity. Hebbian plasticity strengthens synapses based on correlated activity between pre- and postsynaptic neurons. Homeostatic plasticity adjusts overall synaptic strength to maintain stable firing rates across the network. In the epileptogenic brain, this balance is lost. Hebbian mechanisms dominate, driving continual reinforcement of coactive excitatory synapses. Homeostatic feedback that would normally downscale overactive connections becomes ineffective.

Several factors contribute to the collapse of homeostasis. Persistent seizures exhaust intracellular signaling resources required for synaptic scaling. Altered expression of immediate-early genes such as *Arc* and *BDNF* shifts the equilibrium toward potentiation. Disruption of inhibitory tone deprives neurons of the feedback signals necessary to gauge their output relative to network activity. The result is a runaway process of Hebbian strengthening, producing highly interconnected excitatory assemblies.

The dominance of Hebbian plasticity explains why seizures often recruit consistent neuronal populations. The same circuits that have been repeatedly coactivated through seizures become structurally reinforced, establishing

fixed pathways for future synchronization.

6.5 Hyperexcitability as Maladaptive Plasticity

Hyperexcitability in chronic epilepsy can thus be interpreted as the outcome of maladaptive plasticity. The mechanisms that normally encode experience are co-opted to encode pathological synchrony. Synaptic potentiation, dendritic remodeling, and axonal sprouting create a substrate optimized for the recurrence of high-frequency discharges.

At the molecular level, activity-dependent transcription of growth factors and adhesion molecules promotes synaptogenesis in already hyperactive regions. This targeted structural reinforcement perpetuates network instability. The system acquires new attractor states defined by synchronized oscillations, and transitions between these states manifest as seizures.

6.6 The Transition from Cellular to Circuit-Level Organization

The cumulative alterations in synaptic strength and structure represent the link between the cellular and circuit levels of epileptogenesis. Modified connections redefine circuit topology, altering how excitation and inhibition are distributed. Recurrent loops and hyperconnected nodes arise spontaneously from local synaptic changes.

These circuit configurations determine the spatial and temporal dynamics of epileptic activity. Once formed, they exhibit intrinsic rhythmicity and can generate pathological oscillations even in the absence of external input. The circuit becomes a self-organizing entity that sustains its own excitability.

The transition from molecular and cellular dysfunction to circuit-level hyperexcitability marks the emergence of a new hierarchical stage in the epileptogenic process. The following chapter examines this level in detail, exploring how microcircuits and local excitability patterns govern the transformation from localized hyperactivity to network-wide synchronization.

7. Circuit-Level Mechanisms: Microcircuits and Local Excitability

At the circuit level, epileptogenesis is expressed as the progressive distortion of local microcircuits that coordinate excitation and inhibition. Circuits represent the intermediate domain between individual neurons and the global network. Their organization determines how signals are filtered, synchronized, and propagated. When cellular hyperexcitability and synaptic remodeling converge within these structures, the functional architecture of the brain shifts from regulated communication to uncontrolled reverberation.

7.1 The Role of Inhibitory Interneuron Subtypes

Interneurons define the temporal structure of network activity. Their diversity allows multiple forms of inhibitory control across spatial and temporal scales. Parvalbumin-positive (PV+) interneurons provide fast, perisomatic inhibition that synchronizes pyramidal cell firing. Somatostatin-positive (SST+) interneurons regulate dendritic excitability, while vasoactive intestinal peptide (VIP+) interneurons modulate inhibition by targeting other interneurons.

In epileptogenesis, selective vulnerability of these interneuron populations undermines inhibitory control. Loss of PV+ cells disrupts gamma oscillations and increases the likelihood of synchronous bursting. Degeneration or functional impairment of SST+ interneurons removes dendritic gating, permitting uncontrolled back-propagation of action potentials. Reduction in VIP+ activity distorts inhibitory balance within microcircuits. The cumulative effect is a weakening of both phasic and tonic inhibition, leaving excitatory cells to dominate local processing.

Deficient interneuron activity also impairs temporal precision. Without coordinated inhibition, neuronal populations lose phase alignment, allowing pathological synchronization to emerge from previously asynchronous firing patterns.

7.2 Feedforward and Feedback Inhibition Failure

Healthy circuits rely on feedforward and feedback inhibition to constrain excitation. In feedforward inhibition, incoming excitatory input activates interneurons that suppress postsynaptic responses, filtering the spread of activity. In feedback inhibition, activated neurons recruit interneurons that suppress their own excitatory output. Both mechanisms act as dynamic stabilizers of network excitability.

Epileptogenesis alters the efficacy of these inhibitory loops. Reduced interneuron density, decreased inhibitory synaptic strength, and altered receptor properties weaken inhibitory timing. The delay or failure of feedforward inhibition allows excitation to reach downstream targets unopposed. Impairment of feedback inhibition removes the brakes that normally terminate excitation. The result is the emergence of self-perpetuating activity within the circuit, a critical step toward epileptic synchronization.

7.3 Recurrent Excitatory Circuits

Excitatory principal neurons form recurrent connections that enhance information integration and sustain

activity. These loops are essential for short-term memory and temporal summation but can become pathological when unbalanced. During epileptogenesis, the density and strength of recurrent excitatory synapses increase through activity-dependent plasticity and axonal sprouting.

Recurrent excitation permits local assemblies to maintain depolarization long after the initial stimulus has ceased. The persistent activity forms a substrate for population bursts and paroxysmal depolarization shifts, the cellular correlate of interictal spikes. In regions such as the hippocampal CA3 and entorhinal cortex, where recurrent collaterals are abundant, the potential for self-sustained excitation is particularly high.

The interaction between recurrent excitation and weakened inhibition creates a circuit-level attractor state characterized by oscillatory instability. This attractor state forms the prototype of a local epileptogenic focus.

7.4 Hippocampal Circuitry and the Dentate Gate Model

The hippocampus serves as a central structure for studying circuit-level epileptogenesis. Its laminar organization and well-defined connectivity reveal how alterations in circuit function lead to seizure propagation. The **dentate gyrus** normally acts as a gate, filtering cortical input before it reaches the excitatory CA3 network. Granule cells are tightly regulated by inhibitory interneurons and possess intrinsic properties that limit repetitive firing.

In the epileptogenic hippocampus, this gating mechanism collapses. Loss of inhibitory interneurons in the hilus, combined with mossy fiber sprouting, generates recurrent excitation within the granule cell layer. The dentate gyrus shifts from a selective filter to a hyperexcitable relay, allowing synchronized discharges to invade the hippocampal network. Once the gate fails, the CA3 and CA1 regions engage in reverberating excitation that can generalize to the neocortex.

This transformation demonstrates how a specific circuit can change its functional role under pathological conditions, from protective barrier to facilitator of epileptic spread.

7.5 Thalamocortical Circuits in Generalized Epilepsy

Generalized epilepsies often involve disturbances in thalamocortical circuitry. The thalamus and cortex form reciprocally connected loops that generate oscillatory rhythms during sleep and attention. These rhythms arise from the interplay between excitatory thalamic relay neurons and inhibitory neurons of the thalamic reticular nucleus. The system produces rhythmic bursts regulated by T-type calcium channels and GABAergic inhibition.

During epileptogenesis, alterations in T-type channel expression and GABA receptor kinetics increase burst propensity. The oscillatory rhythm transforms into a hypersynchronous spike-wave pattern characteristic of absence seizures. Cortical hyperexcitability further amplifies thalamic input, producing generalized discharges that synchronize large brain regions.

This phenomenon underscores that epileptogenesis is not confined to local circuits but can emerge from dysregulation of rhythmic loops that coordinate distant structures.

7.6 Circuit Motifs Predisposing to Runaway Excitation

Certain structural motifs predispose circuits to instability when homeostatic mechanisms fail. These include high recurrence ratios, convergence of excitatory inputs, and disinhibitory feedback. Circuits containing excitatory-excitatory feedback with delayed inhibition are particularly prone to oscillations that can become epileptiform.

The degree of vulnerability depends on connectivity density and synaptic strength. In densely connected cortical microcolumns, minimal reduction in inhibition or enhancement of synaptic efficacy can trigger population bursts. Computational models demonstrate that small parametric changes in these motifs lead to bifurcations from stable to oscillatory states, illustrating how microscopic reorganization translates into macroscopic instability.

7.7 Emergent Local Dynamics

The transformation of microcircuit dynamics during epileptogenesis reflects the emergent properties of complex systems. Local interactions among excitatory and inhibitory neurons create nonlinear feedback loops capable of generating oscillations, bistability, and critical transitions. Once these circuits reach a threshold of instability, minor perturbations trigger large-scale events such as seizures.

At this level, epileptogenesis represents a transition from regulated, high-dimensional dynamics to low-dimensional attractor states dominated by rhythmic synchronization. The circuit's repertoire of possible activity patterns narrows, reducing functional flexibility.

7.8 The Mesoscale Bridge

Circuit-level alterations bridge cellular pathology and network synchronization. The hyperexcitable circuit acts as a local oscillator that entrains neighboring regions through anatomical and functional connectivity. Repeated

activation strengthens these connections, creating corridors of synchronized activity that extend across the brain. Thus, epileptogenesis at the circuit level provides the scaffolding for the next phase: the emergence of large-scale oscillatory disturbances and pathological network synchronization.

8. Circuit-Level Mechanisms: Disrupted Oscillations and Rhythmicity

Epileptogenesis alters not only the architecture of local circuits but also their temporal coordination. Neural oscillations are the rhythmic patterns of electrical activity that organize communication among neuronal populations. They define the timing of information flow and synchronize activity across spatial scales. Each frequency band—from gamma to delta—reflects the collective dynamics of inhibitory and excitatory interactions within circuits. When the balance of these interactions collapses, the rhythms that sustain functional communication degenerate into pathological synchronization.

8.1 The Nature of Oscillatory Dynamics

Oscillations arise from the interplay between excitatory principal neurons and inhibitory interneurons. Fast gamma oscillations depend on rapid GABAergic inhibition mediated by parvalbumin-positive interneurons, while slower theta and delta rhythms involve complex feedback loops between cortical and subcortical structures. These rhythmic activities maintain temporal precision and enable selective coordination among neurons that represent related information.

In the epileptogenic brain, the mechanisms that generate oscillations remain active but become misaligned. The temporal coordination that once supported functional computation now facilitates hypersynchrony. The transformation is not a simple amplification of normal rhythms but a reconfiguration of their underlying structure.

8.2 Breakdown of Gamma Oscillations

Gamma oscillations (30–80 Hz) are crucial for perceptual binding and cognitive processing. They depend on synchronous inhibitory postsynaptic potentials generated by PV+ interneurons. The loss or dysfunction of these interneurons during epileptogenesis disrupts gamma coherence. Instead of producing tightly phase-locked inhibition, the remaining interneurons fire irregularly, leading to fragmented oscillations.

The reduction in gamma stability removes a key mechanism that prevents low-frequency rhythms from dominating cortical activity. As gamma power declines, slower oscillations gain prominence, creating conditions for pathological synchronization. This shift in frequency dominance reflects a fundamental reorganization of circuit timing and hierarchy.

8.3 Thalamocortical Oscillatory Loops

The thalamus and cortex interact through reciprocal connections that generate rhythmic activity central to consciousness and sleep. Thalamic relay neurons and reticular inhibitory neurons form oscillatory loops controlled by T-type calcium currents and GABAergic feedback. These loops produce sleep spindles and alpha rhythms in healthy brains.

In epileptogenesis, hyperactivation of T-type channels and reduced inhibitory tone distort the normal rhythmic balance. The oscillatory loop becomes excessively resonant, producing bursts of synchronized activity that propagate through cortical projections. This mechanism underlies the generalized spike–wave discharges seen in absence epilepsy. The oscillation no longer reflects coordinated information transfer but a resonance between thalamic and cortical compartments that traps the system in repetitive cycles.

8.4 Phase-Locking and Burst Firing

Oscillatory synchronization depends on precise phase relationships among neurons. Phase-locking ensures that excitatory and inhibitory inputs align in time, maintaining rhythmic stability. In epileptogenic circuits, phase-locking becomes unstable. Excitatory inputs arrive when inhibitory restraint is weak, allowing neurons to depolarize collectively. The failure of precise timing transforms rhythmic oscillations into high-amplitude bursts.

Burst firing represents a nonlinear transition from oscillatory activity to paroxysmal events. It arises when depolarizing currents summate during the vulnerable phase of the oscillation cycle. Once initiated, bursts recruit neighboring neurons through recurrent excitation, expanding the spatial domain of synchronization. The circuit shifts from dynamic balance to runaway excitation, producing interictal and ictal discharges.

8.5 Rhythm Destabilization and Frequency Shifts

Epileptogenesis often manifests as a shift in the frequency spectrum of local field potentials. High-frequency oscillations (80–500 Hz) appear in epileptic regions and correlate with seizure onset zones. These pathological high-frequency oscillations (pHFOs) differ from physiological gamma rhythms. They represent rapid, synchronized firing of small neuronal clusters and serve as biomarkers of local hyperexcitability.

The emergence of pHFOs signals a fundamental reorganization of circuit resonance properties. It reflects shortened synaptic time constants, enhanced recurrent connectivity, and impaired inhibitory control. As the epileptogenic process advances, these high-frequency events merge into low-frequency waves during seizure initiation, demonstrating a cascade from microscopic synchrony to macroscopic rhythm collapse.

8.6 *Linking Oscillatory Disturbances to Seizure Onset Patterns*

Seizures can be viewed as transitions between dynamic states of neural activity. In healthy circuits, oscillations fluctuate within bounded ranges of amplitude and coherence. During seizure initiation, local oscillations exceed these bounds and entrain adjacent regions. The progressive recruitment of neuronal populations converts localized rhythms into coherent waves that span large networks.

The temporal evolution of this transition follows predictable patterns. In focal seizures, local pHFOs precede the emergence of synchronized low-frequency activity. In generalized seizures, thalamocortical oscillations gradually increase in amplitude until they dominate cortical activity. These observations support the concept that seizures represent pathological extensions of normal oscillatory mechanisms rather than wholly distinct phenomena.

8.7 *Oscillatory Coupling and Cross-Frequency Interactions*

In complex neural systems, different oscillatory bands interact through phase–amplitude coupling. Slow oscillations modulate the amplitude of faster rhythms, coordinating activity across temporal scales. Epileptogenesis disrupts this coupling. The hierarchical control of fast rhythms by slower ones becomes erratic, leading to decoupling between frequency bands.

Loss of cross-frequency coupling reduces information segregation and increases global synchrony. The brain transitions from a modular, multi-frequency organization to a monolithic system dominated by a single pathological rhythm. This homogenization of temporal dynamics parallels the structural convergence observed in network reorganization.

8.8 *Rhythmic Instability as a Marker of Circuit Transformation*

The degradation of oscillatory precision and cross-frequency coupling reflects the underlying deterioration of circuit function. Rhythmic instability signifies that inhibitory–excitatory feedback no longer maintains temporal coherence. Instead, circuits oscillate near critical thresholds, where small perturbations trigger large responses.

This proximity to criticality allows the system to switch abruptly between states, producing the paroxysmal nature of seizures. Epileptogenesis thus drives the brain toward a dynamical regime characterized by reduced resilience and increased sensitivity. Oscillatory disturbances serve not only as symptoms but as integral mechanisms of this transformation.

8.9 *From Rhythmic Breakdown to Network Synchronization*

At this stage, the pathological rhythms of local circuits begin to interact and synchronize across distant regions. The collapse of inhibitory regulation and the dominance of resonant oscillations prepare the brain for global coordination of excitation. The transition from local rhythmic disruption to network-wide synchronization defines the threshold between circuit-level and network-level epileptogenesis.

In the next chapter, the focus expands to this network domain, examining how local disturbances integrate into system-wide synchronization dynamics that characterize seizure initiation and propagation.

9. Network-Level Mechanisms: Synchronization Dynamics

Epileptogenesis culminates in the emergence of pathological synchronization across large-scale brain networks. While circuit-level alterations define local excitability, network-level dynamics determine how these disturbances propagate and coalesce into seizures. Synchronization, the temporal alignment of activity across distributed neuronal populations, is a fundamental principle of brain function. In epileptogenesis, synchronization loses its adaptive character and becomes excessive, spatially extensive, and self-sustaining.

9.1 *Transition from Local Excitation to Global Synchronization*

Under normal conditions, local excitations are constrained by inhibitory feedback and limited by the intrinsic architecture of functional networks. In the epileptogenic brain, weakened inhibition and enhanced excitatory coupling enable local oscillations to recruit distant regions. This recruitment proceeds through both anatomical connections and dynamic coupling mechanisms, transforming isolated bursts into coherent network states.

The transition from local to global synchronization often follows a cascade sequence. Initially, clusters of neurons oscillate in phase due to shared input or recurrent excitation. These clusters expand as phase alignment spreads through synaptic and gap-junctional pathways. Once a critical proportion of neurons becomes synchronized, the system enters a metastable state where oscillations reinforce themselves through mutual

entrainment. This process corresponds to the electrographic onset of a seizure.

9.2 Functional Connectivity Changes Before, During, and After Seizures

Functional connectivity refers to the statistical dependence between the activity of distinct brain regions. During epileptogenesis, this connectivity evolves dynamically. Prior to seizure onset, local increases in connectivity appear within epileptic foci, often detectable as elevated coherence or phase-locking values. These preictal changes reflect the formation of transient communication pathways that lower the threshold for synchronization.

During seizures, connectivity expands across cortical and subcortical regions, producing a global rise in synchronization. This state is characterized by decreased network entropy and increased mutual information among nodes, signifying reduced independence of regional activity. After seizure termination, the system typically exhibits a phase of decreased connectivity and reduced responsiveness, a postictal depression that reflects exhaustion of excitatory resources and activation of inhibitory mechanisms.

9.3 Recruitment, Propagation, and Termination

Seizure dynamics can be decomposed into three stages: recruitment, propagation, and termination. Recruitment involves the initial activation of a critical mass of neurons. Propagation represents the spatial expansion of this activity across networks, while termination marks the return to desynchronized, stable dynamics.

Recruitment depends on the strength of local connectivity and the excitability of surrounding tissue. Once a critical synchronization threshold is reached, propagation occurs through both synaptic transmission and extracellular field effects. In particular, ephaptic coupling—electrical influence among neighboring neurons—can accelerate the spread of activity without synaptic mediation.

Termination involves several potential mechanisms. Inhibitory interneuron activation, depletion of neurotransmitter stores, and ionic shifts such as extracellular potassium accumulation all contribute to restoring desynchronization. The precise balance between these processes determines whether the system reverts to baseline or progresses toward chronic hyperexcitability.

9.4 Network Hubs and Node Vulnerability

Not all nodes in a neural network contribute equally to synchronization. Hubs—regions with high connectivity or centrality—play a disproportionate role in coordinating activity. Examples include the hippocampus, thalamus, and medial prefrontal cortex. In epileptogenesis, structural and functional alterations within these hubs increase their influence, enabling them to drive global synchronization.

Vulnerability of a node depends on both intrinsic excitability and topological position. Highly connected hubs are exposed to larger cumulative inputs and therefore more susceptible to pathological entrainment. Once a hub becomes hyperexcitable, its influence on network dynamics amplifies. In computational models, removal or modulation of a single hyperconnected node can prevent seizure propagation, underscoring the hierarchical nature of epileptogenic control.

9.5 Small-World Topology and Hypersynchrony

Healthy brain networks exhibit **small-world topology**, combining local clustering with short global path lengths. This configuration optimizes efficiency and robustness. Epileptogenic reorganization often shifts the network toward increased clustering and reduced path length, enhancing synchronization probability.

The small-world structure becomes a double-edged sword. It allows rapid coordination but also enables pathological synchronization to spread efficiently. The transition from balanced to hypersynchronous dynamics occurs when local clustering exceeds a critical threshold, producing redundant excitatory pathways. Once hypersynchrony arises, it dominates network activity, limiting the system's capacity for independent processing.

9.6 Seizure as a Network State Transition

Seizures can be described mathematically as transitions between attractor states of the brain's dynamic system. In the preictal state, activity fluctuates around a stable equilibrium. Gradual changes in parameters such as excitability, connectivity, or inhibition push the system toward a critical point. At this threshold, the equilibrium loses stability and the network enters a new attractor characterized by large-scale synchronization.

This transition exhibits features of critical phenomena observed in complex systems, including increased correlation length, reduced variance recovery, and hysteresis. Once the seizure state is established, it persists until adaptive or exhaustion mechanisms return the network to the original attractor basin. The phenomenon of critical slowing down—a progressive delay in recovery from perturbations—serves as an early warning marker for impending transitions.

9.7 Dynamic Reconfiguration of Network Architecture

Epileptogenesis reshapes network architecture through both structural and functional mechanisms. Synaptic

plasticity strengthens excitatory pathways, while neuronal loss removes inhibitory connections. These changes alter the distribution of network motifs and create circuits optimized for synchronization.

Functional connectivity maps derived from neuroimaging and electrophysiology reveal shifting patterns of interaction over time. During the latent phase, focal hyperconnectivity develops within the epileptogenic zone. As the condition progresses, secondary hubs emerge through activity-dependent recruitment. The network becomes increasingly integrated and less modular, facilitating widespread synchronization during seizures.

9.8 Directionality and Causality in Network Synchronization

Advanced analytical approaches such as Granger causality and transfer entropy reveal that seizure propagation is not symmetric. Specific regions consistently act as drivers, transmitting activity to others that act as receivers. This directionality reflects structural hierarchies within the brain. During epileptogenesis, driver regions gain influence due to strengthened efferent connections and altered phase relationships.

Identifying these directional pathways provides insight into how seizures generalize and persist. It also offers potential targets for intervention, such as disrupting causal links through neuromodulation or targeted inhibition.

9.9 Network Resilience and Breakdown

The capacity of a network to resist synchronization reflects its resilience. In the healthy brain, redundancy and inhibitory feedback maintain this resilience. During epileptogenesis, loss of inhibitory control, decreased diversity of oscillatory frequencies, and excessive hub dominance erode resilience. The network approaches a critical regime where minimal perturbations produce large-scale synchronization.

Resilience breakdown marks the irreversible transition from potential epileptogenesis to established epilepsy. At this point, the network has reorganized into a new steady state optimized for synchronous activity. This transformation demonstrates that epilepsy is not merely a symptom of local pathology but a systemic reconfiguration of brain dynamics.

9.10 Integration of Network Synchronization Dynamics

Network synchronization embodies the culmination of all preceding levels of epileptogenic transformation. Ion channel dysfunction increases excitability, synaptic plasticity reorganizes connectivity, and circuit failures reduce temporal regulation. These elements converge in the network to produce a global state of hypersynchrony. The seizure, therefore, represents the expression of a network attractor stabilized by pathological feedback loops. Recovery from seizures requires the network to traverse energy barriers that separate attractor basins, explaining the abrupt onset and termination of epileptic events. Understanding these transitions at the network level offers a framework for predicting seizures and developing strategies that restore dynamic stability.

10. Network-Level Mechanisms: Large-Scale Network Reorganization

Epileptogenesis ultimately reshapes the global architecture of the brain. The reorganization of large-scale networks encompasses alterations in structural connectivity, functional interactions, and dynamical stability. What begins as local hyperexcitability evolves into a distributed pathology that modifies communication across cortical and subcortical systems. The chronically epileptic brain is not merely a normal brain with seizures; it is a reorganized network that has adopted a maladaptive mode of operation.

Resting-state functional connectivity reflects the spontaneous activity of brain regions in the absence of specific tasks. In epilepsy, resting-state networks such as the default mode network (DMN), salience network, and frontoparietal control network undergo significant reconfiguration. Functional MRI studies reveal decreased coherence within the DMN and increased connectivity between limbic and sensorimotor regions. These changes suggest a redistribution of network resources. The DMN, which normally supports introspective and self-referential processing, becomes suppressed, while task-positive networks show excessive activation even at rest. This inversion reflects chronic instability in large-scale coordination, where regions that should remain quiescent are continuously engaged by subcortical excitatory drives. The persistence of abnormal resting-state patterns indicates that epileptogenesis affects baseline brain function, not only transient seizure events. The system maintains a state of latent hyperexcitability, in which background synchronization is elevated but contained below the threshold for overt seizures.

Diffusion tensor imaging and tractography have revealed that structural reorganization accompanies functional changes. White matter tracts connecting key hubs such as the hippocampus, thalamus, and prefrontal cortex often exhibit altered integrity. Decreased fractional anisotropy indicates demyelination or axonal disruption, while compensatory increases in other tracts suggest aberrant connectivity growth. Axonal sprouting extends beyond local circuits to interregional pathways, forming novel connections that bypass normal relay centers. This rewiring increases the efficiency of pathological communication while reducing segregation between networks. The architecture evolves toward a state that favors rapid global synchronization at the cost of modular independence.

Resilience in brain networks refers to their capacity to absorb perturbations without transitioning into pathological states. A resilient network exhibits redundancy, inhibitory balance, and modular segregation. Epileptogenesis erodes each of these properties. Loss of inhibitory control reduces feedback stability, while hyperconnectivity diminishes modular boundaries. The network becomes increasingly homogeneous, and small perturbations can evoke system-wide responses. Quantitatively, this transition can be observed as a decrease in graph-theoretic modularity and increased global efficiency. Although higher efficiency may appear beneficial, it reflects pathological overintegration that undermines stability. Once the network crosses this threshold, oscillatory disturbances can easily recruit distant areas, facilitating seizure generalization.

Graph theory provides a mathematical language for describing network reorganization. In healthy conditions, brain networks display high clustering coefficients and moderate path lengths, forming a small-world structure that balances specialization with integration. During epileptogenesis, clustering increases while path length decreases, moving the network toward a globally synchronized regime. Degree centrality and betweenness centrality analyses reveal hypertrophy of hub nodes, especially in temporal and thalamic regions. These hubs act as control centers of epileptiform activity, capable of driving global synchronization. The emergence of hub dominance signifies a loss of distributed control, concentrating influence within a few nodes and rendering the network vulnerable to their instability. Assortativity, the tendency of high-degree nodes to connect with similar nodes, also increases in epileptic networks. This clustering of hubs amplifies feedback loops and supports the spread of synchronized activity. The resulting architecture resembles an overcoupled system with diminished capacity for asynchronous communication.

Functional connectivity is not static; it fluctuates over time. The healthy brain exhibits a dynamic repertoire of connectivity states, transitioning flexibly between configurations according to cognitive demands. In epilepsy, this repertoire shrinks. The network spends more time in highly synchronized states and less time in diverse configurations. Temporal variability of connectivity, often measured as **dynamic flexibility**, declines markedly during epileptogenesis. This rigidity indicates reduced adaptability and predisposition to critical transitions. When the system becomes trapped in a limited set of states, any perturbation is more likely to trigger a seizure, as alternative stable configurations are unavailable.

Neural activity consumes metabolic energy, primarily through synaptic transmission and maintenance of ionic gradients. Hub regions with high connectivity bear disproportionate metabolic demands. Chronic hyperactivity during epileptogenesis imposes energy stress on these hubs, leading to mitochondrial dysfunction, oxidative damage, and reduced ATP availability. Energy constraints feed back into functional instability. Exhausted hubs fail to maintain inhibitory control and exhibit irregular firing patterns that propagate instability. This phenomenon, termed hub overload, converts energetic vulnerability into a driver of network dysfunction. The relationship between energy homeostasis and network dynamics underscores the systemic nature of epileptogenesis.

Over time, repeated seizures consolidate network reorganization into a stable phenotype. Structural and functional alterations become embedded in the brain's architecture, and even seizure-free intervals display pathological connectivity. The network now operates within a new dynamical regime characterized by reduced modularity, increased synchronization, and persistent excitability. This maladaptive phenotype maintains itself through continuous feedback between activity and structure. Recurrent seizures reinforce excitatory connections and further degrade inhibitory pathways. The brain becomes locked in a cycle of excitation, plasticity, and reorganization that perpetuates the epileptic state.

Structural and functional reorganization are intertwined. Changes in white matter connectivity alter signal propagation, which modifies functional coupling patterns. Functional synchronization, in turn, drives structural plasticity through activity-dependent mechanisms. Epileptogenesis represents the convergence of these reciprocal processes, forming a closed loop of maladaptive adaptation. The dynamic coupling between structure and function ensures that even small disturbances can have long-term consequences. A transient increase in synchronization may stimulate axonal growth, which subsequently reinforces synchronization. The process is self-reinforcing and explains why epilepsy often persists even after the initial insult has resolved.

Understanding large-scale network reorganization provides both diagnostic and therapeutic opportunities. Imaging markers of connectivity changes can identify individuals at risk before clinical seizures develop. Network analysis allows localization of critical hubs for targeted interventions such as deep brain stimulation or transcranial neuromodulation. Therapeutic strategies that restore modularity and reduce hub dominance may enhance network resilience. Computational models suggest that partial desynchronization or selective inhibition of overconnected nodes can stabilize dynamics without impairing global function.

Large-scale network reorganization represents the culmination of epileptogenesis. It integrates molecular dysfunction, cellular hyperexcitability, synaptic plasticity, and circuit alterations into a coherent systems-level transformation. The resulting network no longer behaves as a collection of adaptive modules but as a unified

oscillator predisposed to synchronization. This perspective reframes epilepsy as a disease of network topology and dynamics rather than isolated lesions or channel defects. The network becomes the final expression of multilevel processes, where the history of cellular and circuit events is encoded in the structure of global connectivity. In the next chapter, these interactions across scales will be integrated into a unified framework, linking molecular, cellular, circuit, and network dysfunction into a single mechanistic model of epileptogenesis.

11. Multilevel Integration: Linking Molecular, Cellular, Circuit, and Network Dysfunction

Epileptogenesis unfolds as a continuum of biological transformation that links microscopic molecular events to macroscopic network dynamics. The process cannot be compartmentalized into isolated stages. Each level—molecular, cellular, circuit, and network—interacts continuously through feedback and feedforward loops that amplify or compensate for perturbations. Understanding epileptogenesis requires an integrated framework that traces these interactions across scales.

At the molecular level, mutations or dysregulation of ion channels alter intrinsic excitability. Persistent sodium currents, impaired potassium conductance, or disrupted chloride gradients modify the firing thresholds of neurons. These alterations change the statistical distribution of action potential generation within populations. Over time, circuits composed of such neurons exhibit altered gain functions, meaning that small inputs produce disproportionately large outputs. This microscopic instability scales upward. Enhanced excitability increases the likelihood of synchronous firing within microcircuits, while inhibitory interneurons struggle to maintain control. The resulting imbalance forms the foundation for abnormal oscillations that characterize epileptic circuits. The process demonstrates how a molecular perturbation, when embedded in recurrent architecture, produces emergent collective behavior.

Deficient inhibition within circuits transforms local oscillations into propagating network waves. Reduced GABAergic tone, impaired interneuron recruitment, and loss of inhibitory connectivity diminish temporal precision. Excitatory neurons begin to fire in correlated clusters, and these clusters synchronize through long-range connections. Once synchronization crosses a critical spatial threshold, the network transitions into a globally coherent state. The synchronization is self-reinforcing because network coupling increases excitatory drive in return. At this level, epileptogenesis manifests as the loss of dynamic segregation among functional modules. Networks that once operated independently now oscillate in unison, erasing the boundaries between cognitive systems.

Epileptogenesis is sustained by feedback loops that operate across levels of organization. Increased firing promotes calcium influx, which activates signaling pathways that upregulate excitatory receptor expression and synaptic growth. Structural remodeling then strengthens recurrent circuits, further increasing firing. The same positive feedback occurs at larger scales: seizures enhance network connectivity and plasticity, which in turn facilitate future seizures. This multilevel reinforcement converts transient disturbances into stable pathological configurations. Unlike normal plasticity, which is self-limiting through homeostatic feedback, epileptogenic plasticity lacks intrinsic termination. The system continually reorganizes toward higher excitability and stronger synchronization until constrained by external intervention or energy depletion.

While molecular and cellular events initiate epileptogenesis, higher levels exert downward influence that reshapes their dynamics. Network synchronization alters the local environment of neurons through changes in extracellular ion concentrations and neurovascular coupling. Repetitive global activation modifies gene expression, promoting further channel dysregulation. This bidirectionality exemplifies *cross-scale control*: molecular changes shape network behavior, and network states modulate molecular processes. The interplay between upward emergence and downward causation gives epileptogenesis its recursive character. The brain functions as a closed adaptive system where every level constrains and informs the others.

The integrated model of epileptogenesis can be conceptualized as a cascade. The initial perturbation—genetic, metabolic, inflammatory, or traumatic—triggers a wave of compensatory responses at the cellular level. If compensation fails, these responses propagate upward, altering circuit structure and network function. Each transition amplifies instability and reduces resilience. The cascade progresses nonlinearly. Early changes may remain silent for long periods, accumulating until they reach a tipping point. Once crossed, the system reorganizes rapidly, producing clinical seizures. The same cascade may operate in reverse during recovery or therapeutic modulation, suggesting that epileptogenesis is reversible under certain conditions if the hierarchical feedback loops can be disrupted.

Complex systems theory provides a framework for understanding epileptogenesis as a series of critical transitions. These transitions occur when gradual parameter shifts—such as increased excitability or reduced inhibition—push the system toward a bifurcation point. Near this point, the system becomes highly sensitive to perturbations and exhibits phenomena such as critical slowing down and increased correlation length. In neural terms, critical transitions correspond to the onset of hypersynchrony. Small perturbations, such as random

synaptic fluctuations, can synchronize entire assemblies. Once the seizure state is entered, returning to equilibrium requires external mechanisms that restore diversity of activity and reestablish inhibitory control.

Computational neuroscience provides tools for integrating mechanisms across scales. Biophysical models simulate ion channel kinetics and neuronal firing, while network models capture the emergence of synchronization and wave propagation. Multiscale models combine these approaches, linking molecular dynamics to network oscillations. Such models reveal that epileptogenesis is not merely the sum of abnormalities at different levels but the product of nonlinear interactions among them. For instance, a mild reduction in inhibitory conductance may have little effect in isolation but can precipitate global synchronization when coupled with structural reorganization. Theoretical integration thus transforms descriptive pathology into predictive understanding.

The multilevel nature of epileptogenesis also involves temporal hierarchies. Molecular changes occur over milliseconds to hours, structural remodeling over days to weeks, and network reorganization over months or years. These differing timescales interact: rapid electrical events trigger slow molecular cascades that in turn alter long-term structural dynamics. The accumulation of slow processes behind fast activity explains the delayed onset of epilepsy after an initial insult. During the latent period, molecular and cellular modifications quietly reshape the system's stability landscape. The eventual emergence of spontaneous seizures marks the point where long-term processes have sufficiently altered fast dynamics to sustain synchronization autonomously.

Epileptogenesis thus represents a convergence of processes operating across spatial and temporal scales. Channelopathies create permissive conditions for hyperexcitability, glial dysfunction destabilizes the extracellular environment, synaptic plasticity reinforces maladaptive connections, and network topology amplifies synchronization. These components are not independent but interdependent. The integrated perspective reveals that therapeutic interventions must target multiple levels simultaneously. Correcting ionic imbalances without addressing structural plasticity or network reorganization may alleviate symptoms temporarily but cannot halt the progression of epileptogenesis.

A unified multilevel framework portrays epileptogenesis as an evolving system rather than a static pathology. It connects molecular biology, electrophysiology, and systems neuroscience within a single conceptual structure. The framework emphasizes three principles:

- 1) Hierarchical coupling: local changes propagate upward through structured interactions.
- 2) Feedback amplification: activity reinforces the mechanisms that produced it.
- 3) Loss of resilience: the system approaches criticality through cumulative destabilization.

Understanding epileptogenesis as a multilevel, recursive, and self-organizing process provides the theoretical foundation for mechanistic classification, predictive modeling, and targeted therapeutic strategies.

12. Temporal Dimensions of Epileptogenesis

Epileptogenesis is not a singular event but a temporally stratified process extending across multiple phases. Each phase involves distinct molecular, cellular, and network mechanisms that interact dynamically over time. Understanding these temporal dimensions clarifies why the transformation from a healthy brain to an epileptic one can occur gradually, sometimes over years, and why interventions are most effective within specific temporal windows.

The acute phase begins immediately after an initial insult such as traumatic brain injury, prolonged seizures, infection, ischemia, or inflammation. During this period, neurons and glial cells experience rapid physiological disruption. Ion homeostasis is lost, intracellular calcium rises, and glutamate is excessively released. Reactive oxygen species and inflammatory mediators are produced in large quantities. In the acute phase, compensatory responses attempt to restore equilibrium. Astrocytes increase glutamate uptake, microglia remove debris, and inhibitory neurons transiently enhance activity. Despite these efforts, the cellular environment remains unstable. The critical determinant of progression is whether the acute disturbance resolves completely or initiates self-sustaining molecular cascades that persist into the latent phase.

The latent phase, often clinically silent, represents the incubation period of epilepsy. During this stage, neurons may appear to function normally, but profound molecular and structural changes are taking place. Gene expression shifts toward pro-excitatory and proinflammatory profiles. Synaptic reorganization, dendritic remodeling, and network rewiring occur gradually. The latent phase is characterized by the consolidation of maladaptive plasticity. Strengthened excitatory connections, weakened inhibition, and altered receptor expression form the substrate for future seizures. Although no spontaneous seizures are evident, electrophysiological recordings often show interictal spikes or high-frequency oscillations, reflecting subthreshold instability. This phase provides a crucial therapeutic window. Interventions that restore inhibition,

modulate plasticity, or dampen inflammation can potentially halt the epileptogenic process before it becomes irreversible.

The chronic phase marks the clinical manifestation of epilepsy. Spontaneous recurrent seizures emerge as the reorganized network achieves self-sustaining hyperexcitability. At this stage, the brain's structural and functional architecture has been fundamentally altered. Chronic epileptic tissue displays persistent inflammation, gliosis, neuronal loss, and altered metabolism. Synaptic and network reorganization continues, reinforcing seizure pathways. The system exhibits bistability, alternating between interictal and ictal states depending on minor fluctuations in excitation or inhibition. Pharmacological interventions during the chronic phase often suppress seizures temporarily but rarely reverse the underlying network reorganization. The chronic state represents the stabilization of the epileptogenic system within a pathological attractor.

In certain forms of epilepsy, particularly genetic and developmental types, epileptogenesis progresses slowly over months or years without an identifiable initial insult. Gradual accumulation of channel dysfunction, synaptic imbalance, or network maladaptation leads to the eventual emergence of seizures. This slow trajectory highlights the brain's remarkable capacity for compensation. For long periods, homeostatic mechanisms counterbalance excitability, maintaining functional stability. Seizure onset occurs only when compensatory capacity is exhausted. The process exemplifies the nonlinear relationship between molecular pathology and clinical expression.

Activity-dependent plasticity serves as the mechanism by which repeated subthreshold events produce cumulative change. The kindling model remains the most illustrative example. Repeated low-intensity stimulation gradually reduces the seizure threshold until spontaneous seizures occur. Kindling demonstrates that epileptogenesis is an experience-dependent process. Each episode of excessive activity modifies synaptic strength, gene expression, and network connectivity, effectively "teaching" the brain to seize. Once established, the hyperexcitable network maintains its configuration even in the absence of further stimulation, indicating that epileptogenesis involves a durable alteration in the brain's learning mechanisms.

Different processes operate on distinct timescales. Ionic disturbances and neurotransmitter release occur within milliseconds to seconds. Gene expression and receptor trafficking unfold over hours to days. Structural remodeling and network reorganization extend over weeks to years. These timescales interact hierarchically. Fast events trigger slower molecular cascades that, once initiated, feed back to modulate fast dynamics. The repeated coupling of rapid activity with slow structural change creates a temporal feedback loop that gradually consolidates epileptogenesis.

Seizures represent acute manifestations of network instability, while epileptogenesis represents the long-term process that creates the conditions for instability. A seizure can occur without leading to chronic epilepsy if homeostatic mechanisms restore balance afterward. Epileptogenesis begins when the recovery processes themselves become maladaptive. This distinction explains why seizure suppression does not necessarily prevent epileptogenesis. Drugs that reduce acute excitability may have little effect on the slower plastic changes that underpin the disease process. Therapeutic strategies must therefore address both immediate excitability and long-term remodeling.

Epileptogenesis does not progress linearly but cyclically. Each seizure alters the brain in ways that influence future activity. The relationship between seizures and network remodeling forms a feedback loop: seizures promote reorganization, and reorganization promotes seizures. Over time, these cycles deepen the pathological state. The temporal dimension thus embodies both accumulation and recurrence. Epileptogenesis is not merely the passage of time but the repetition of transformation. Each episode reinforces the system's movement toward chronicity.

Identifying reliable biomarkers of epileptogenesis requires recognizing its temporal evolution. Early molecular indicators such as upregulation of inflammatory cytokines, alteration of chloride transporters, or appearance of high-frequency oscillations precede behavioral seizures. Monitoring these temporal markers enables prediction and early intervention. Temporal biomarkers also serve to evaluate treatment efficacy. A therapeutic agent may not abolish seizures immediately but could slow or reverse molecular and structural trajectories, extending the latent period or preventing chronic transformation.

Epileptogenesis integrates processes occurring across multiple temporal domains. The acute phase provides the initiating insult, the latent phase establishes structural and functional reorganization, and the chronic phase manifests the new equilibrium of pathological excitability. Slow progression and recurrent activity bind these phases into a continuous evolutionary sequence. The temporal view highlights the dynamic nature of epileptogenesis. It is a process of transformation rather than accumulation, a dialogue between rapid events and long-term adaptations. Understanding its timing is essential for both mechanistic insight and therapeutic design.

13. Mechanism-Based Classification of Epilepsies

The classification of epilepsies has historically relied on clinical manifestations and electroencephalographic patterns. While useful for diagnosis and treatment selection, this descriptive framework obscures the underlying biological diversity of epileptic disorders. A mechanism-based classification, grounded in molecular and systems neuroscience, seeks to align clinical categories with causal pathways. It connects pathophysiology to etiology, facilitating personalized therapy and prediction of disease trajectories.

Traditional classifications, such as those proposed by the International League Against Epilepsy (ILAE), distinguish epilepsies by seizure type (focal, generalized, combined) and syndrome (temporal lobe epilepsy, absence epilepsy, Lennox–Gastaut syndrome, and others). This system reflects observable features but often aggregates heterogeneous mechanisms under the same label. For example, temporal lobe epilepsy may arise from hippocampal sclerosis, cortical dysplasia, or autoimmune inflammation—distinct causes that share similar electroclinical profiles. As a result, identical treatments yield divergent outcomes. Without mechanistic resolution, therapy remains empirical rather than predictive.

A mechanism-based framework addresses these limitations by organizing epilepsies according to pathophysiological processes rather than symptoms. It acknowledges that seizures are emergent phenomena that can result from multiple converging mechanisms. By identifying the specific molecular or network dysfunction involved, clinicians can select interventions that target the root cause. This approach aligns with modern medicine's shift toward precision therapeutics. It transforms epilepsy from a collection of syndromes into a family of mechanistically defined disorders, each characterized by distinct signatures of excitability, plasticity, and network dynamics.

Genetic epilepsies exemplify the molecular tier of classification. Mutations in ion channel genes—SCN1A, KCNQ2, CACNA1H, GABRA1, among others—produce dysfunction in membrane excitability and synaptic inhibition. Each mutation creates a specific biophysical signature that shapes neuronal firing and circuit dynamics. Channelopathies represent disorders of molecular gating. In Dravet syndrome, SCN1A mutations impair sodium channel function in inhibitory interneurons, reducing their firing and disinhibiting excitatory circuits. In contrast, KCNQ2-related epilepsies result from loss of potassium currents that stabilize membrane potential. Despite shared clinical features, these mechanisms differ fundamentally and require distinct therapeutic strategies—sodium channel blockers may worsen Dravet syndrome but ameliorate KCNQ2 epilepsies. Receptor mutations such as GRIN2A (NMDA receptor) or GABRB3 (GABA_A receptor) affect synaptic kinetics, altering temporal coordination within circuits. The mechanistic taxonomy identifies these as receptoropathies, a subclass of molecular epilepsies driven by receptor dysfunction rather than ion channel gating *per se*.

Structural epilepsies arise from abnormal organization of neural circuits due to developmental malformations, trauma, tumors, or gliosis. Cortical dysplasia, for instance, produces ectopic neurons and aberrant connectivity that generate recurrent excitation. Post-traumatic epilepsy follows axonal injury and sprouting, which reorganize circuits into hyperconnected modules. Mechanistically, structural epilepsies belong to the circuit level of classification. Their defining feature is altered network architecture rather than molecular dysfunction. Surgical resection of the lesion often reduces seizures because it removes the pathological circuit. The principle demonstrates that in circuit-driven epilepsies, network topology itself constitutes the core pathology.

Metabolic epilepsies reflect deficits in cellular energy metabolism. Abnormalities in glycolysis, oxidative phosphorylation, or mitochondrial function impair ATP-dependent ion transport and neurotransmitter recycling. Energy failure increases extracellular potassium, reduces GABA synthesis, and triggers depolarization. Examples include POLG-related mitochondrial disease, pyruvate dehydrogenase deficiency, and glucose transporter type 1 (GLUT1) deficiency. The unifying mechanism is failure of bioenergetic homeostasis leading to ionic imbalance and hyperexcitability. Treatment strategies such as ketogenic diets or metabolic supplementation target this level directly.

Autoimmune and inflammatory processes constitute another mechanistic class. In autoimmune encephalitis, antibodies against NMDA, LGI1, CASPR2, or GABA receptors alter receptor trafficking and synaptic function. Cytokine-mediated inflammation produces similar effects by modulating channel expression and impairing blood–brain barrier integrity. Inflammatory epilepsies operate across cellular and glial levels. They demonstrate that epileptogenesis can arise from immune signaling rather than intrinsic neuronal instability. Immunotherapy can reverse seizures in these conditions, emphasizing the reversibility of mechanistically targeted intervention.

Some epilepsies cannot be attributed to localized lesions or molecular defects but arise from distributed network dysfunction. Generalized epilepsies, absence seizures, and certain idiopathic forms exemplify this category. Their defining mechanism is large-scale synchronization within thalamocortical or corticolimbic systems. Network epilepsies reflect maladaptive coordination rather than structural damage. Treatments targeting synchronization dynamics, such as deep brain stimulation or neurostimulation of thalamic nuclei, modulate network excitability without altering cellular properties. The mechanistic classification recognizes these as

disorders of network regulation rather than tissue pathology.

Many epilepsies span multiple levels simultaneously. For example, **tuberous sclerosis complex** involves genetic mutations that disrupt cellular signaling (molecular level), cortical malformations (structural level), and network hyperconnectivity (network level). Mechanistic classification accommodates such hybrid categories by mapping the contribution of each process. The overlap among categories highlights the continuum of epileptogenesis. Molecular, cellular, and network factors interact to produce the final phenotype. Classification is thus not rigid but relational, representing dominant rather than exclusive mechanisms.

Etiological classification identifies the origin of epilepsy—genetic, structural, metabolic, immune, infectious, or unknown. Mechanism-based taxonomy refines this by specifying *how* each etiology disrupts neural dynamics. For instance, genetic etiology may act through channelopathy, while immune etiology may act through receptor internalization or cytokine-mediated disinhibition. By linking etiology to mechanism, clinicians can infer potential treatment targets. This approach aligns diagnostic categories with therapeutic logic, bridging basic neuroscience and clinical practice.

Mechanism-based classification transforms epilepsy research from descriptive observation to causal explanation. It encourages integration of molecular genetics, neurophysiology, and computational modeling into unified diagnostic frameworks. Clinically, it supports personalized medicine, where therapy is guided by identified mechanisms rather than symptomatic patterns. The shift toward mechanistic understanding also redefines prevention. If epileptogenesis is identified as a process rather than a static condition, interventions can be designed to interrupt it before chronicity develops. Mechanistic classification thus bridges the gap between theory and therapy, connecting the multilevel framework of epileptogenesis to clinical outcomes. In the following chapter, these mechanistic insights will be translated into therapeutic strategies that target epileptogenesis across molecular, cellular, and network dimensions.

14. Implications for Therapeutic Strategies

The recognition of epileptogenesis as a multilevel process has transformed the conceptual landscape of epilepsy therapy. Traditional antiepileptic drugs (AEDs) suppress seizures primarily by modulating ion channels or neurotransmitter systems, but they do not prevent or reverse the underlying epileptogenic process. A mechanistic understanding that spans molecular, cellular, circuit, and network levels enables the development of interventions aimed not only at symptom control but at disease modification.

Most current AEDs act by enhancing inhibition or reducing excitation. Sodium channel blockers, GABA enhancers, and calcium channel modulators effectively suppress neuronal firing but do not alter the structural and functional reorganization that sustains chronic epilepsy. Once the brain has undergone epileptogenic remodeling, seizure suppression without addressing the underlying mechanisms allows the disease to persist in latent form. Symptomatic control provides short-term relief but fails to interrupt the progression of excitatory plasticity, glial inflammation, and network synchronization. This limitation underscores the need for mechanism-based therapies that target the causes of epileptogenesis rather than its outcomes.

At the molecular level, correcting ionic imbalances remains a cornerstone of therapy. Selective modulators of sodium, potassium, calcium, and chloride channels can restore excitability toward physiological ranges. In channelopathies, precision therapy aims to counter specific biophysical defects. For example, in Dravet syndrome, agents that enhance sodium channel function in inhibitory interneurons or reduce persistent sodium current in excitatory neurons can rebalance firing dynamics. Drugs such as stiripentol, fenfluramine, and emerging sodium channel subtype-selective modulators illustrate this approach. Chloride transporters KCC2 and NKCC1 have become novel therapeutic targets. Bumetanide, an NKCC1 inhibitor, reduces intracellular chloride accumulation and restores GABAergic inhibition in neonatal and acquired epilepsies. Regulation of potassium currents through KCNQ openers or BK channel modulators offers another avenue for stabilizing neuronal membranes. These interventions exemplify the principle that molecular-level correction can influence higher scales when properly aligned with cellular and circuit dynamics.

Epileptogenesis involves significant contributions from glial dysfunction and neuroinflammation. Therapies directed at astrocytic and microglial signaling aim to restore homeostasis. Astrocyte-targeted agents that upregulate GLT-1 (EAAT2) improve glutamate clearance and reduce excitotoxicity. Compounds enhancing Kir4.1 expression normalize potassium buffering. Inhibitors of TGF- β signaling can counteract albumin-induced hyperexcitability following blood-brain barrier breakdown. Anti-inflammatory interventions, including IL-1 β antagonists (anakinra), TNF- α blockers, and HMGB1 inhibitors, have shown potential to attenuate epileptogenic progression. These therapies target cytokine-mediated cascades that alter receptor function and promote glial reactivity. The conceptual shift here is from neuronal suppression to microenvironmental restoration. Modulating glial and immune processes reestablishes the conditions necessary for neuronal stability rather than merely reducing activity.

Because epileptogenesis involves maladaptive plasticity, therapeutic strategies that regulate synaptic remodeling are essential. Agents influencing BDNF-TrkB signaling, mTOR pathways, and matrix metalloproteinases can modify synaptic and structural reorganization. Inhibitors of the mTOR pathway, such as everolimus, have demonstrated efficacy in tuberous sclerosis complex by limiting aberrant growth and synaptogenesis. Modulation of BDNF signaling may prevent overexpression of excitatory synapses. Regulation of extracellular matrix components stabilizes dendritic spines and limits mossy fiber sprouting. Targeting plasticity requires precision, as excessive suppression could impair learning and recovery. The goal is selective modulation of pathological reinforcement without disrupting adaptive processes.

When epileptogenesis reaches the network level, interventions must address synchronization dynamics. Deep brain stimulation (DBS), vagus nerve stimulation (VNS), and responsive neurostimulation (RNS) exemplify such strategies. DBS of the anterior nucleus of the thalamus modulates thalamocortical circuits and reduces seizure frequency. VNS influences widespread cortical and subcortical systems through neuromodulatory pathways involving norepinephrine and serotonin. RNS provides closed-loop stimulation that detects and disrupts pathological synchronization in real time. Noninvasive methods such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) aim to desynchronize overconnected networks and restore oscillatory diversity. Computational models suggest that periodic or stochastic stimulation patterns can increase network entropy and reduce seizure probability. These techniques operate at the macroscopic level but embody the same mechanistic logic: restoring balance between excitation and inhibition by reconfiguring network dynamics rather than suppressing local excitability alone.

Gene therapy provides a direct means to correct molecular defects. Adeno-associated viral (AAV) vectors carrying genes encoding functional ion channels, inhibitory neurotransmitter enzymes, or neuroprotective peptides have been tested in preclinical models. For example, delivery of KCNQ2 or SCN1A cDNA restores normal channel function, while expression of GAD67 enhances GABA synthesis. Targeted expression of inhibitory peptides such as neuropeptide Y or galanin can suppress local hyperexcitability. CRISPR-based genome editing opens the possibility of precise correction of pathogenic mutations, while RNA-based approaches (antisense oligonucleotides) can modulate gene expression. These technologies bring epileptogenesis therapy into the realm of molecular precision.

Restoration of energy balance and ionic stability complements molecular and network-level strategies. The ketogenic diet, rich in fats and low in carbohydrates, shifts metabolism toward ketone utilization, enhancing mitochondrial efficiency and reducing excitability. Pharmacological agents that support mitochondrial function, such as coenzyme Q10, carnitine, or creatine, aim to maintain energy homeostasis. Regulation of pH, oxygenation, and oxidative stress further stabilizes cellular environments prone to depolarization.

Ultimately, effective intervention must engage multiple levels simultaneously. Combining molecular therapies with network modulation and anti-inflammatory agents addresses both cause and consequence. Computational modeling can optimize combinations by predicting cross-level effects and feedback outcomes. Disease modification implies restoration of resilience rather than permanent suppression. It requires reestablishing the brain's capacity to regulate excitation, inhibition, and plasticity dynamically.

Emerging strategies aim to prevent epileptogenesis before seizures appear. Early identification of biomarkers—such as gene expression changes, high-frequency oscillations, or network instability—allows preemptive therapy. Neuroprotective compounds, glial modulators, or targeted gene editing may stop the cascade before it reaches chronic stages. In advanced stages, interventions may focus on reprogramming maladaptive circuits through patterned stimulation or activity-dependent gene expression. Machine learning algorithms integrated with neural interfaces could enable personalized, adaptive therapies that respond dynamically to network states.

The future of epilepsy therapy lies in transitioning from controlling seizures to correcting the mechanisms that produce them. Mechanism-based strategies unite molecular biology, neurophysiology, and systems neuroscience into a coherent therapeutic philosophy. They aim not to silence the brain but to restore its self-organizing balance. This transition reflects a paradigm shift in medicine: from treating disease manifestations to engineering stability in complex biological systems. Epileptogenesis, understood as a multilevel process, becomes not only a challenge but an opportunity to develop therapies that act across the full hierarchy of brain organization.

15. Conclusion

Epileptogenesis represents one of the most intricate examples of pathological transformation in the nervous system. It is not a singular malfunction of cells or molecules, but a progressive reorganization that spans from ion channels to global brain networks. Understanding its full scope requires unifying the principles of cellular biophysics, synaptic plasticity, circuit dynamics, and network theory into one continuous explanatory model.

At the molecular level, disruptions in ion channel function, receptor regulation, and neurotransmitter

homeostasis alter the fundamental rules of excitability. Sodium and calcium influx become excessive, potassium and chloride gradients collapse, and neurotransmitter systems lose precision. These molecular instabilities define the initial trigger of epileptogenesis. At the cellular level, the cumulative effects of these molecular disturbances manifest as hyperexcitability and loss of inhibitory tone. The neuron becomes less responsive to feedback and more prone to firing bursts. Altered receptor trafficking, intracellular calcium signaling, and gene expression reprogram the cell toward sustained excitation. At the circuit level, these cells assemble into maladaptive microcircuits. Inhibitory interneurons degenerate or become functionally ineffective. Recurrent excitation and impaired feedback inhibition convert localized oscillations into reverberating loops. The dentate gate fails, thalamocortical rhythms distort, and local synchronization becomes a self-sustaining phenomenon. At the network level, microcircuit instability scales into global synchronization. The topology of brain connectivity reorganizes toward small-world hypersynchrony, reducing modular independence and increasing global efficiency. Seizures emerge as transitions between metastable network states, representing systemic reorganizations rather than isolated discharges. Across these scales, glial cells and immune processes act as amplifiers and mediators. Astrocytes lose their buffering capacity, microglia release inflammatory cytokines, and the blood-brain barrier deteriorates. These non-neuronal elements integrate cellular pathology with systemic responses, transforming local excitability into widespread instability.

The central feature of epileptogenesis is its recursive architecture. Changes at one level propagate upward through emergent dynamics and downward through feedback modulation. Channel mutations alter firing patterns that modify synaptic plasticity; seizures alter gene expression that further destabilizes ionic conductance. This cross-scale coupling defines epileptogenesis as a *self-referential system*. Once initiated, it sustains itself through positive feedback loops that couple molecular events with network behavior. The brain evolves toward a state of reduced resilience, where small perturbations trigger global responses. The system no longer returns easily to equilibrium because equilibrium itself has shifted.

Traditional neurology regarded seizures as the primary phenomenon and epilepsy as their repetition. The multilevel model reverses this relationship. Seizures are not the cause of epilepsy; they are the expression of an already reorganized system. The focus thus moves from episodic events to the underlying transformation that makes such events possible. This shift has profound implications for diagnosis and treatment. It directs research toward early detection of epileptogenic processes before clinical symptoms appear and emphasizes interventions that restore the system's capacity for self-regulation rather than merely suppressing its manifestations.

Epileptogenesis unfolds over multiple timescales and involves nested hierarchies of organization. Rapid ionic changes interact with slow structural remodeling; acute injury initiates chronic reorganization. This complexity explains the variability in latency, severity, and therapeutic response among individuals. Each patient's epilepsy reflects a unique trajectory through a shared multidimensional space of mechanisms. A unified framework must therefore be probabilistic rather than categorical. It should capture the evolving interaction of parameters—excitability, inhibition, connectivity, energy balance—that determine the brain's position within the epileptogenic landscape.

The multilevel view transforms classification systems from symptom-based to mechanism-based. Epilepsies are organized not by outward expression but by dominant processes: channelopathy, plasticity disorder, inflammatory dysfunction, or network disintegration. Such a taxonomy links molecular genetics to clinical behavior and aligns research with therapeutic development. For basic science, this model encourages integrative approaches that connect ion channel biophysics to computational models of network synchronization. For clinical practice, it promotes personalized interventions based on mechanistic diagnosis. For public health, it reframes epilepsy as a preventable systems disorder rather than an inevitable outcome of injury.

Mechanism-based therapy arises directly from this framework. If epileptogenesis is a cascade of self-reinforcing processes, then interrupting the cascade at any level can halt progression. Ion channel modulation, glial restoration, anti-inflammatory intervention, and network desynchronization become complementary rather than competing strategies. Preventive medicine gains new significance. Identifying biomarkers of early epileptogenesis—altered oscillations, inflammatory signatures, genetic susceptibilities—creates the possibility of preemptive treatment. The therapeutic goal shifts from suppressing seizures to stabilizing the system before pathological synchronization consolidates.

Epileptogenesis serves as a paradigm for studying complex adaptive systems in biology. It demonstrates how distributed interactions across scales produce emergent pathology. The principles derived from its study—feedback amplification, critical transitions, multiscale coupling—apply broadly to other neurological and systemic disorders. Epilepsy research thus contributes not only to its own field but to a general understanding of how the brain reorganizes under chronic perturbation. The epileptogenic process exemplifies the transition from dynamic flexibility to rigidity, from resilience to fragility, and from normal function to pathological stability.

A unified theory of epileptogenesis must integrate quantitative modeling, empirical data, and theoretical

neuroscience. It must describe how molecular stochasticity becomes network determinism, and how collective behavior emerges from local rules. Such a theory would treat the brain as a nonlinear dynamical system characterized by attractor landscapes. Epileptogenesis would then correspond to the reshaping of that landscape—where once-deep basins of stability flatten and new attractors representing hypersynchrony emerge. The goal of therapy becomes restoring the geometry of stability rather than merely suppressing its symptoms.

Viewing epilepsy as a multilevel, self-organizing disorder transforms our understanding of treatment, prognosis, and even identity. The epileptic brain is not broken in a simple mechanical sense; it is reorganized according to altered principles of adaptation. Therapy thus becomes not the eradication of disease but the guidance of self-organization toward health. This conceptual shift invites humility. The brain's complexity exceeds any single explanatory level, and the success of intervention depends on respecting that complexity. Integrative models do not simplify reality; they illuminate its interconnectedness.

Epileptogenesis as a multilevel process unites molecular biology, cellular physiology, and network theory into a coherent vision of disease evolution. It reveals the nervous system as a hierarchy of interacting processes in continuous dialogue. The path from channel dysfunction to network reorganization illustrates how biological systems, when destabilized, create new equilibria that preserve activity at the cost of control. To understand epilepsy is to understand how the brain learns maladaptively, how it builds stability out of instability. To treat it is to restore balance across levels—to reestablish inhibition, restore homeostasis, rebuild connectivity, and reopen the space for flexible dynamics. In this unified view, epileptogenesis is not an irreversible descent into chaos but a reversible transition within a dynamic system. The task of neuroscience is to map the pathways of that transition and to design interventions that guide the brain back toward equilibrium.

References

Avanzini, G., & Franceschetti, S., (2003). Cellular biology of epileptogenesis. *The Lancet Neurology*, 2(1), 33–42. <https://www.thelancet.com/journals/laneur/article/PIIS1474442203002655/abstract>

Avanzini, G., & Franceschetti, S., (2015). Mechanisms of epileptogenesis. In J. Engel Jr. & T. Pedley (Eds.), *Epilepsy: A Comprehensive Textbook* (pp. 39–64). Wiley-Blackwell. <https://doi.org/10.1002/978118936979.ch3>

Goldberg, E. M., & Coulter, D. A., (2013). Mechanisms of epileptogenesis: A convergence on neural circuit dysfunction. *Nature Reviews Neuroscience*, 14(5), 337–349. <https://doi.org/10.1038/nrn3482>

McNamara, J. O., Huang, Y. Z., & Leonard, A. S., (2006). Molecular signaling mechanisms underlying epileptogenesis. *Science's STKE*, 2006(356), re12. <https://doi.org/10.1126/stke.3562006re12>

Najm, I., Ying, Z., & Janigro, D., (2001). Mechanisms of epileptogenesis. *Neurologic Clinics*, 19(2), 323–349. [https://www.neurologic.theclinics.com/article/S0733-8619\(05\)70017-7/abstract](https://www.neurologic.theclinics.com/article/S0733-8619(05)70017-7/abstract)

Pitkänen, A., & Lukasiuk, K., (2009). Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. *Epilepsy & Behavior*, 14(1), 16–25. <https://www.sciencedirect.com/science/article/pii/S1525505008002916>

Qureshi, I. A., & Mehler, M. F., (2010). Epigenetic mechanisms underlying human epileptic disorders and the process of epileptogenesis. *Progress in Neurobiology*, 90(4), 291–314. <https://www.sciencedirect.com/science/article/pii/S0969996110000525>

Staley, K., (2015). Molecular mechanisms of epilepsy. *Nature Neuroscience*, 18(3), 367–372. <https://doi.org/10.1038/nn.3947>

Sumadewi, K. T., Harkitasari, S., & Tjandra, D. C., (2023). Biomolecular mechanisms of epileptic seizures and epilepsy: A review. *The Egyptian Journal of Neurology, Psychiatry and Neurosurgery*, 59(1), 82. <https://link.springer.com/article/10.1186/s42494-023-00137-0>

Zaitsev, A. V., (2025). Special Issue “Molecular and Cellular Mechanisms of Epilepsy—3rd Edition”: Emerging frontiers in neuroinflammation, network remodeling, and therapy. *International Journal of Molecular Sciences*, 26(20), 10020. <https://www.mdpi.com/1422-0067/26/20/10020>

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (<http://creativecommons.org/licenses/by/4.0/>).